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Spécialité de doctorat : Physique
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Résumé

Dans les marchés financiers modernes, l’exécution d’ordres de grande taille influence
significativement les prix des actifs, un phénomène connu sous le nom d’impact de prix.
Comprendre et modéliser cet impact est essentiel pour les investisseurs institutionnels,
les market makers et les traders algorithmiques, car il affecte directement les coûts
d’exécution, les stratégies de trading et l’efficience des marchés. Les modèles analy-
tiquement tractables supposent souvent une fonction d’impact (croisé) linéaire, mais les
observations empiriques montrent que l’impact de prix est généralement concave et tran-
sitoire, décroissant dans le temps selon une loi de puissance plutôt qu’une décroissance
exponentielle.

Cette recherche examine les fondements théoriques et empiriques de l’impact de prix
sous quatre angles :
1. Stratégies d’exécution optimales avec un impact concave et transitoire.
La première partie analyse les stratégies optimales lorsque l’impact de prix est non
linéaire et transitoire, c’est-à-dire que les transactions passées influencent encore les
prix. Les résultats théoriques montrent que des règles de trading simples peuvent être
dérivées même pour des signaux d’alpha et de liquidité non paramétriques. L’analyse
empirique, fondée sur des données propriétaires, quantifie la concavité et la décroissance
de l’impact et leur influence sur l’exécution optimale.
2. Coût de la mauvaise spécification des modèles d’impact en gestion de
portefeuille.
Les gestionnaires de portefeuille s’appuient sur des modèles d’alpha pour prévoir les
rendements et des modèles d’impact de prix pour estimer les coûts d’exécution. Une
mauvaise spécification de l’impact peut conduire à une suroptimisation ou une sous-
optimisation des ordres, réduisant ainsi la performance. Cette étude dérive des for-
mules analytiques pour évaluer ces coûts asymétriques : sous-estimer la concavité ou
la décroissance réduit les profits, tandis qu’une surestimation peut transformer une
stratégie rentable en pertes. Ces résultats fournissent des lignes directrices clés pour
calibrer les modèles de trading.
3. Extension aux marchés multi-actifs avec impact croisé.
Dans la pratique, l’exécution d’un ordre modifie non seulement le prix de l’actif concerné,
mais aussi celui des actifs corrélés, un phénomène appelé impact croisé. Cette étude
étend les modèles d’impact concave au cas multi-actifs, garantissant la cohérence du
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marché et excluant toute possibilité d’arbitrage ou de manipulation. En imposant des
contraintes minimales, cette approche aboutit à des modèles parcimonieux, calibrables
sur des données réelles, offrant une représentation efficace et réaliste de l’impact multi-
actifs.
4. Une estimation non paramétrique du cross-impact sur des données pro-
priétaires enrichies par des données publiques.
Les modèles analytiques supposent souvent une décroissance exponentielle de l’impact
dans le temps, alors que les données empiriques suggèrent une décroissance en loi de
puissance. Cela soulève la question suivante : faut-il imposer une forme fonctionnelle ?
Pour répondre à cela, un estimateur non paramétrique de noyaux d’impact concaves et
décroissants est généralisé au cas multivarié, en étendant une méthode d’apprentissage
hors-ligne au cadre du cross-impact. Afin d’élargir la couverture des données, un proxy
synthétique de méta-ordres fondé sur un échantillonnage aléatoire est introduit, en com-
plément des données propriétaires de CFM. Appliqué aux contrats à terme sur le maïs,
l’estimateur met en évidence une décroissance en loi de puissance de l’auto-impact, des
gains prédictifs liés au cross-impact, ainsi que des asymétries dues aux différences de
liquidité.

Cette recherche apporte des avancées théoriques et appliquées en modélisation de
l’impact de prix. Elle permet aux acteurs du marché d’affiner leurs stratégies d’exécution,
d’améliorer la gestion des risques, et d’adopter des modèles plus robustes face à la com-
plexité des dynamiques d’impact de prix.
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Abstract

In modern financial markets, the execution of large orders significantly affects asset
prices, a phenomenon known as price impact. Understanding and modeling this impact
is crucial for institutional investors, and algorithmic traders, as it directly influences
execution costs, trading strategies, and market efficiency. Analytically tractable models
often assume a linear (cross-)impact function, but empirical evidence suggests that price
impact is typically concave in order size and exhibits transient effects that decay over
time, often following a power-law rather than an exponential form.

This research explores the theoretical foundations and empirical properties of price
impact, addressing four key aspects:
1. Optimal execution strategies in the presence of concave and transient
price impact.
The first part of this research examines optimal trading strategies when price impact is
both nonlinear and transient, meaning that past trades continue to influence prices over
time. Theoretical results demonstrate that simple and explicit trading rules can be de-
rived even in general settings with nonparametric alpha and liquidity signals. Empirical
analysis using proprietary trading data provides key insights into the levels, concav-
ity, and decay properties of price impact, showing how they shape optimal execution
strategies.
2. The costs of using a misspecified price impact model in portfolio manage-
ment.
Portfolio managers rely on alpha models to predict returns and on price impact models to
quantify execution costs. However, if the impact model is incorrect, traders may over- or
under-trade their signals, leading to suboptimal performance. This study derives explicit
formulas for the cost of impact model misspecification and shows that these costs are
inherently asymmetric: underestimating impact concavity or decay erodes profits, while
overestimating them can turn otherwise profitable strategies into loss-making trades.
These insights provide crucial guidance for the construction and calibration of trading
models.
3. The extension of concave price impact models to multi-asset settings with
cross-impact.
In practice, the execution of trades in one asset affects not only its own price but also
the prices of other correlated assets, a phenomenon known as cross-impact. This study
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extends existing concave impact models to the multi-asset case, developing a framework
that ensures market consistency and rules out arbitrage or price manipulation. By
imposing minimal theoretical constraints, this approach leads to parsimonious model
specifications that can be effectively calibrated to trading data, providing a realistic and
computationally tractable representation of multi-asset price impact.
4. A non-paramteric estimation of cross-impact on proprietary data en-
hanced with public data.
While analytically tractable models often assume an exponential decay for the persis-
tence of price impact, empirical evidence suggests a power-law decay. This raises the
question: why assume any specific functional form at all? To address this, a non-
parametric estimator for concave, decaying impact kernels is extended to the multivari-
ate setting, extending an offline learning method to the cross-impact case. To enhance
data coverage, a synthetic meta-order proxy based on random sampling is introduced
alongside CFM’s proprietary trade data. Applied to Corn futures, the estimator reveals
power-law self-impact decay, predictive gains from cross-impact, and liquidity-driven
asymmetries.

These findings contribute to both academic research and practical trading applica-
tions, helping market participants refine their execution strategies and risk management
frameworks in the presence of complex price impact dynamics.
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Chapter 1

Introduction

“... what the world needs is ways to execute efficiently and to measure trans-
action costs.”
— Robert Almgren (2021)

1.1 Trading costs in modern capital markets

In the high-speed, competitive world of modern finance, execution has become the
new battleground. As markets become more efficient and alpha signals diminish in
strength and persistence, what ultimately matters is not just finding alpha, but keeping
it. Trading costs have moved from being a footnote to becoming a central determinant
of portfolio performance. While linear costs such as fees and spreads, are important for
high-frequency traders, market impact costs have become more significant for investors
concerned with portfolio performance over longer horizons. As Almgren reflects in a
podcast on the role of optimal execution, it is vital for all traders in financial markets.

Indeed, the importance of execution is no longer limited to back-office considera-
tions or short-term tactical trades. With the rise of algorithmic trading, which is now
responsible for the majority of volume in many liquid markets, execution strategies are
at the heart of modern capital markets. As the European Central Bank (2019) notes:

“[Algorithmic] trading has been growing steadily since the early 2000s and,
in some markets, is already used for around 70% of total orders. This growth
has been facilitated by technological developments, such as increased comput-
ing power, reduced storage costs and the implementation of artificial intelli-
gence and machine learning techniques.”

Fast, scalable, and theoretically sound execution code is now an essential part of any
serious trading operation.

Yet many execution models remain simplistic. Linear models of market impact are
analytically convenient, but fail to capture the empirical realities observed in trading
data: price impact is concave in order size and decays in complex, multi-timescale
patterns. Furthermore, in portfolios and correlated markets, trades in one asset often
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CHAPTER 1. INTRODUCTION

influence the prices of others — an effect known as cross-impact. Ignoring this effect
can lead to serious execution shortfalls and unintended risk exposures.

This thesis addresses these challenges by developing and empirically validating ex-
ecution models that incorporate concave self- and cross-impact with decay. Central to
this approach is the use of both public and proprietary data to estimate model parame-
ters robustly, and the use of realistic structural constraints, such as the absence of price
manipulation, to ensure tractability and the absence of arbitrage in the models. The
result is a framework that is both empirically grounded and practically useful; one that
allows traders to ask not only “What is my signal?” but “What will it cost to act on
it?” and “How can I do so optimally?”.

1.2 From alpha to action: how to actually trade it?

These days, hedge funds extract alpha from just about anything that flickers on a screen.
Satellite images of parking lots? Check. Twitter sentiment? Of course. The angle of a
CEO’s smile during an earnings call? Probably. And then there is traditional market
data: predictive signals in order flow, liquidity imbalances, volatility clustering — all
carefully engineered into alpha.

Enter portfolio management. While the signal-generation team high-fives over a
new backtest that “definitely will not overfit this time”, the portfolio manager faces the
real challenge: turning that alpha into actual returns through execution. This means
trading under constraints, in a market that pushes back via price impact. The key
question becomes:

How should a portfolio manager optimally schedule their trades to balance
alpha and market impact, especially when impact is concave and slow to
fade?

A key practical challenge is how to translate robust statistical findings into actionable
execution strategies by embedding them into a consistent stochastic control framework.
To the best of my knowledge, Bertsimas and Lo (1998) was among the first to derive
dynamic optimal trading strategies aimed at minimizing the expected cost of trading a
large block of equity over a defined horizon. Their work provided a foundational deter-
ministic framework with price-impact functions shaped by market conditions. Following
this, Almgren and Chriss (2001) advanced the field by framing algorithmic execution
as a control problem, assuming price impact decays instantaneously. They introduced
a novel mean-variance approach, allowing for a trade-off between market impact and
execution risk, which contrasted with the deterministic approach of Bertsimas and Lo
(1998) by addressing stochastic elements in execution strategy optimization. It was
soon recognized, however, that price impact has mean-reverting dynamical properties.
Bouchaud et al. (2004) introduced the propagator model after empirically observing
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1.2. FROM ALPHA TO ACTION: HOW TO ACTUALLY TRADE IT?

from Trades and Quotes data on the Paris stock market that traded prices exhibit ran-
dom walk properties due to a delicate balance between long-range correlated market
orders and mean-reverting limit orders. This model captures the market’s response to
past trades via a time-varying propagator, often assumed to follow a power-law decay
without a fixed decay law. In contrast, Obizhaeva and Wang (2013) introduced the
OW model, which uses an analytically tractable linear framework with exponentially
decaying impact, derived from a stylized order book model. Their approach was later
generalized by Fruth et al. (2013, 2019) to a broader class of impact functions.

While concavity is a key empirical feature of market impact, even basic theoretical
properties, such as the absence of price manipulation, remain poorly understood in
many models. A notable exception is the concave framework of Alfonsi, Fruth, and
Schied (2010) (AFS), where optimal execution is solved explicitly.

In the AFS model, price impact is modeled as a concave function of an exponential
moving average of past trades:

It = h(Jt), dJt = −1
τ

Jtdt + λtdQt, (1.2.1)

where Qt is the cumulative trade size, λt is the push factor that may depend on the
asset’s liquidity, τ is the decay timescale, and h(·) is an increasing, concave function,
typically modeled to follow square-root behavior. Figure 1.1 illustrates a sample impact
trajectory It (blue) created through uniform trading over two time intervals T1 and T2

under a concave power-law function h(x) = sgn(x)|x|c, where c = 0.5. When the first
trade stops, impact decays rapidly, but it is still lingering in the market when the next
metaorder starts. This is why it is important to model impact dynamics to take into
account the past trades.

I t

d
Q

t

t

Q1

T1

Q2

T2

T1 T2

Figure 1.1: Impact trajectory It (blue) under a uniform execution profile where dQt

(orange) is piecewise constant and It following the AFS model in Eq. 1.2.1 for c = 0.5.

The price forecast is commonly called an alpha signal and we define it as

αt = Et [ST ′ − St]

for some time T ′ > T , where T is the execution horizon usually smaller than one day
and St is the unaffected price. We consider two types of alpha signals to model realistic
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S
t

α
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(a) Constant: Long-term traders with macro
signals do not assume intra-day decay.

S
t

α
t

tT

News

(b) Decaying: News signals may decay during
execution.

Figure 1.2: Sample trajectories of two alpha signals (orange) corresponding to the change
in the fundamental price (blue). The execution of the metaorder takes place during the
execution horizon T . Left: The alpha is constant during execution, which corresponds
to a macro (long-term) signal. Right: During execution alpha is decaying which is a
characteristic of signals generated from earnings news.

trading scenarios, ranging from constant signals αt = α to those that decay over time,
e.g. dαt = −θ−1αtdt + σdWt where θ characterizes the alpha decay induced by the
change in the unaffected price σdWt. Figure 1.2a shows an alpha-signal that does not
decay throughout execution. These could be signals that fundamental traders commonly
use over a long prediction horizon. On the other hand, an example for decaying alphas
can be signals that are constructed from earnings news; they have a quick decay between
open and close of the market which need to be taken into account.

Given the unperturbed price St, a trading strategy Qt and an impact model It(Q),
a smooth strategy’s P&L Yt has the dynamics.

dYt = QtdSt − ItdQt.

The trader’s cash balance can be derived by integration as shown in Chapter 2,
Section 2.3. The trader’s objective is to maximize the risk neutral expected P&L E[YT ]
which solves the stochastic control problem

sup
Q

E
[∫ T

0
(αt − It) dQt

]
.

By switching the control variables from positions Qt and It to the corresponding
impact Jt and assuming a push-factor of form λt = eγt for a smooth process γt, the
problem becomes a simple pointwise maximization. Note, we deliberately focus on a
risk-neutral objective without an inventory penalty for two reasons. First, this set-up
reflects common practice in large hedge funds and principal trading firms, where risk
constraints are less restrictive. Second, mapping to impact space, which simplifies the
problem into pointwise maximization, relies on the linearity of the objective in Qt and
cannot be applied directly when a quadratic inventory cost is included. Under these
constraints, the optimal impact state is computed:
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1.2. FROM ALPHA TO ACTION: HOW TO ACTUALLY TRADE IT?

Table 1.1: Transaction Cost Analysis for two different alpha signals that are either
constant (Macro) or decay exponentially with a timescale θ (News). Both α and optimal
impact I∗ are in bps with respect to the initial price. Left: Liquidity is constant (γ′

t = 0).
Right: Liquidity changes.

(a) Constant Liquidity

α τ/θ I∗

Strategy (bps) (bps)
A (Macro) 60 0 40
B (News) 90 1/5 72

(b) Varying Liquidity

α τ/θ I∗

Strategy (bps) (bps)
Constant Liquidity 90 1/15 64
Dropping Liquidity 90 1/15 72
Raising Liquidity 90 1/15 60

Key Result 1: A tractable solution to a concave impact model
with decay

In the AFS model, the optimal impact state is given in closed form by:

I∗
t =

(
τ−1 + γ′

t

)
αt − α′

t

(1 + c)τ−1 + γ′
t

. (1.2.2)

where c < 1 is the concavity measure, τ is the impact decay timescale and α′
t =

dαt/dt. The optimal trade rate dQt/dt can then be recovered from I∗
t using Eq.

1.2.1.

The closed-form expression in Equation (1.2.2) illustrates how optimal execution bal-
ances several forces: the alpha level, its decay with respect to transient, concave market
impact and the changing liquidity in the market. Table 1.1 offers a mock transaction
cost analysis across different trading environments to help interpret these results.

Table 1.1 (a) considers two prototypical alpha signals under constant liquidity: a
constant and an exponentially decaying alpha. When alpha is constant, the optimal
impact simplifies to I∗

t = α/(1 + c). For a concavity parameter of c = 0.5, this results in
spending approximately two-thirds of the available alpha to overcome market impact.
In contrast, a trader operating under the false assumption of linear impact (c = 1)
would estimate higher costs and trade less, thus leaving alpha unexploited. When the
alpha signal decays, the optimal impact increases. The trade-off now depends on the
relative speed of signal decay versus impact decay, encoded in the ratio τ/θ: more rapidly
decaying signals justify more aggressive trading to capture value before it vanishes.

This behavior is illustrated in Figure 1.3. The first and third panels show the optimal
impact trajectories for constant and decaying alphas during constant liquidity. Blue
lines correspond to c = 0.5 (concave) and orange to c = 1 (linear). The concave model
consistently yields higher optimal impact, reflecting more aggressive trading. In the
presence of alpha decay, the optimal strategy accelerates early in the horizon to front-
run the signal’s decay.
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Figure 1.3: Four subplots showing optimal impact I∗
t under and a constant alpha for

one (panel one) and two (panel two) impact decay timescale, decaying alpha with one
impact decay timescale (panel three) and lastly decaying alpha with varying liquidity
(panel four). In all cases, concave impact (c = 0.5, blue) leads to more aggressive
trading compared to linear impact (c = 1, orange). The dashed lines denote the baseline
for constant liquidity; deviations from this line indicate the effect of dynamic market
conditions.

Table 1.1 (b) explores the effect of changing liquidity, modeled through the term γ′
t

in Equation (1.2.2). Importantly, the optimal trade-off between alpha level and decay
is independent of the absolute level of liquidity and instead depends on its dynamics. A
rising λt (worsening liquidity, i.e., γ′

t > 0) increases the weight of the current alpha level,
favoring slower execution. Conversely, improving liquidity conditions (γ′

t < 0) amplify
the effect of alpha decay, calling for faster trading.

The final panel in Figure 1.3 captures this effect visually. The dashed lines show the
baseline scenario of constant liquidity, while solid lines indicate time-varying conditions.
When liquidity drops (light curves), the optimal impact rises above the baseline; when
liquidity improves (dark curves), it falls below. These dynamics demonstrate that exe-
cution timing should adjust not only to the alpha signal but also to the evolving state
of market liquidity.

1.3 Impact and integrity: price manipulation in execution
models

When impact decays and liquidity fluctuates, a dangerous possibility emerges: manip-
ulation. Huberman and Stanzl (2004) were among the first to identify this issue, intro-
ducing the concept of quasi-arbitrage in their work. They demonstrated that when the
price impact of trades is time stationary, only linear price-impact functions can elim-
inate quasi-arbitrage opportunities, ensuring viable market prices. Building on these
foundational ideas, Gatheral (2010) formulated the price manipulation condition by
defining round-trip trades that should inherently bear positive costs. While Huberman
and Stanzl (2004) focused on the absence of arbitrage in stationary impact functions,
Gatheral’s work provided a mathematical framework to ensure that trading strategies
could not exploit impact decay for cost-free gains, thus maintaining market integrity.
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1.4. THE TEMPORAL STRUCTURE OF IMPACT: BALANCING DECAY AND
EXECUTION TIMING

Fruth et al. (2013) also noted that time-dependent liquidity can potentially lead
to price manipulation. In particular, a trader could exploit periods of low liquidity to
create upward price pressure and then unwind their position when liquidity improves
to effectively generate profits without informational advantage. This leads to a critical
requirement: models must be robust to price manipulation.

Some models inadvertently allow price manipulation. In fact, machine learning-
based execution strategies occasionally report unrealistically high Sharpe ratios, only to
be revealed as exploiting such loopholes in the modeling framework.

How can we ensure that execution models remain arbitrage-free, even when
impact is transient and liquidity is time-varying?

An arbitrage-free model only allows round-trip trades Q0 = QT = 0 over a trade
horizon [0, T ] that have positive expected costs, i.e. E[

∫ T
0 ItdQt] > 0. To prevent

arbitrage through liquidity timing, the impact model must remain strictly concave in
the control variable.

Key Result 2: No-Price Manipulation Condition

In the AFS-model a sufficient no-arbitrage condition is

τγ′
t > −(1 + c). (1.3.1)

This condition provides a simple rule-of-thumb for practitioners and modelers alike:
if liquidity improves too rapidly relative to the decay and concavity of impact, manipu-
lation strategies may arise and must be ruled out by design.

1.4 The temporal structure of impact: balancing decay
and execution timing

Markets are not only sensitive to the size of a trade, but also to its timing. Once a
transaction is executed, its influence on prices does not remain static; it begins to decay,
gradually fading as new information and trades enter the market. This transient nature
of impact is a fundamental feature of real-world trading, and understanding its temporal
structure is key to developing robust execution strategies.

Empirically, price impact decays across a broad range of time scales. Some compo-
nents vanish quickly, within minutes or even seconds, while others persist for hours or
more. While traditional models often assume an exponential decay structure, several
studies have shown that this may be overly simplistic. Notably, Bouchaud et al. (2004,
2009a) and Bucci et al. (2015, 2019a) provide evidence of power-law decay in financial
markets, suggesting a richer, more nuanced temporal behavior that cannot be captured
by a single exponential mode.
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This complexity introduces a central challenge for optimal trading: while impact
decays over time, so too does the expected return from an alpha signal. Execution
strategies must therefore navigate the tension between two competing forces – one push-
ing to wait and reduce costs, the other urging speed to capture value before the signal
dissipates.

What are the dynamical properties of price impact, and how can they be used
to balance impact decay against alpha decay in execution strategies?

To address this trade-off, we extend the classical Alfonsi–Fruth–Schied (AFS) frame-
work to a setting with multiple decay rates. Specifically, we introduce a model with N

exponential decay kernels, each characterized by its own decay timescale τn and concav-
ity parameter cn. The total impact experienced by the trader is modeled as a weighted
sum of these components:

It =
N∑

n=1
wnhn(Jn

t ),

dJn
t = −τ−1

n Jn
t dt + λdQt, Jn

0 = 0.

(1.4.1)

Here, Jn
t denotes the decaying memory of past trading activity on timescale τn, λ is

the instantaneous impact coefficient, and hn represents the concave impact function
associated with each kernel. The weights wn reflect the contribution of each mode.

This flexible structure captures multiple layers of decay simultaneously and reflects
heterogeneous market responses from both fast and slow liquidity providers. It is partic-
ularly useful for modeling how different trading strategies and information flows interact
with market depth across timescales.

To empirically calibrate this model, we use a proprietary dataset of ∼ 105 metaorders
on futures contracts executed by CFM between 2012 and 2022. This long time span
spans different market regimes and evolving execution practices, which raises natural
concerns about stationarity. While the model is estimated globally, we emphasize that
some parameters, particularly decay rates and push-factor vary over time and across
products due to changes in liquidity, market microstructure and CFM’s trading behavior.

We also ask whether similar insights can be drawn from public data. Since metaorder
datasets are typically inaccessible to researchers and smaller institutions, we assess
whether properly aggregated public trade flow can approximate the multi-timescale
structure seen in the proprietary data.

For estimation, we normalize all quantities to control for volatility and liquidity
seasonality. We then fit a power-law impact model with multiple exponential decay
components, as specified in (1.4.1). Estimation proceeds via linear regression over a
fixed grid of candidate (τn, cn) values, enabling us to recover the impact profile and
relative importance of each timescale.
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1.4. THE TEMPORAL STRUCTURE OF IMPACT: BALANCING DECAY AND
EXECUTION TIMING

Key Result 3: Metaorder Impact Decays on Muti-Timescales

Empirical fits reveal that price impact decays over (at least) two dominant
timescales:

• A short timescale τ1 ≈ 0.5 day (70% of total impact),

• A long timescale τ2 ≈ 65 days (30%).

Both decay components share the same concavity c ≈ 0.5, validating the square-
root law.

To understand whether public data on the same asset class can be used to calibrate
impact models, we apply the same fitting procedure to “proxy metaorders” derived from
order flow imbalance on the public trading tape. Proxy trades are constructed over 3-
hour bins to match the average metaorder duration in our dataset. The results of the
same fitting procedure are

Key Result 4: Public Data Misspecifies Impact Magnitude and
Curvature

Calibration on order flow imbalance retrieves similar short-term decay (τ ≈ 0.3
days) and concavity (c ≈ 0.5) for a single-scale model, but:

• It underestimates the overall impact magnitude, leading to smaller weights
wn (see Table 2.4).

• For multi-scale models, it fails to capture long-horizon decay (τ1 = 2, τ2 =
0.3 day).

• The curvature is scale-dependent: more linear at short timescales (c1 ≈
0.65), more concave at long timescales (c2 ≈ 0.35).

To shed light on these results, Figure 1.4 compares peak impact from proprietary
metaorders and public order flow imbalance. The metaorder impact follows a clean
power-law with constant concavity, consistent with the square-root law which has been
confirmed in Sato and Kanazawa (2024). In contrast, impact from order flow imbalance
for two different time intervals (30s and 3h comparable to average metaorder duration)
displays a sigmoidal shape that has already been observed in Patzelt and Bouchaud
(2018): it increases linearly at small sizes and then saturates, suggesting that the public
tape is not scale invariant.

The proprietary dataset reveals a long-term impact decay that aligns with the con-
cept of traded alpha signals, as discussed in Bacry et al. (2015). At a daily time scale,
price movements post-metaorder divide into expected returns initiating investment deci-
sions and an idiosyncratic impact that reduces over time. Public datasets, however, mix
these idiosyncratic elements, leading to unclear impact decay parameters. This entangle-
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Figure 1.4: Impact is plotted in log-log scale as a function of (left) the metaorder volume
where the average execution horizon is T̄ ≈ 3 h and (right) the order flow imbalance
over two different time intervals T1 = 30 s (orange) and T2 = 3 h (blue).

ment results in different decay parameters when using public data, potentially skewing
model accuracy. Thus, proprietary data is crucial for capturing the true multi-scale
nature of market impacts and ensuring more accurate execution strategies.

Given that the pre-factor can both underestimate and potentially overestimate trad-
ing costs depending on the bin size and the asset features, this mismatch implies that
using public data for model calibration can lead to overly optimistic or pessimistic as-
sumptions about cost scaling. This is especially relevant when applying such models
in automated execution systems, where even minor misestimations can systematically
distort trade scheduling over repeated runs. Consequently, execution strategies based
on these models can lead to trading too aggressively or too conservatively, ultimately
resulting in net financial losses (negative P&L) or in lost opportunities for profit due to
overly cautious trading.

By calibrating the correct parameters from the proprietary dataset, we can integrate
them into the trader’s objective function, which then decomposes into a sum of all
impact components:

∫ T

0
(αt − It) dQt =

N∑
n=1

wn

∫ T

0
(αt − hn(Jn

t )) dQt.

To ensure that all impact components are driven by the same trading trajectory
(Qt), a consistency constraint must be imposed:

dQt = λ−1τ−1
n Jn

t , dt + λ−1dJn
t for all n.

This constraint is enforced via time-dependent Lagrange multipliers (ηn
t ), leading to

the following key result for the optimal impact trajectory.
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1.5. TRADING WITH THE WRONG MODEL: THE COST OF MISSPECIFYING
IMPACT

Key Result 5: Optimal Trading with multi-impact decay

In the multi-timescale AFS model with uniform concavity c, the optimal impact
trajectory It satisfies:

I∗
t = 1

1 + c

[
αt −

N∑
n=1

(
wnτnα′

t + (τn − τ1)ηn
t

′)] . (1.4.2)

The Lagrange multipliers ηn
t enforce consistency across the N moving average states

Jn
t so that they all correspond to the same trading strategy Qt. They solve a (non-)

linear ODE system that depends on the timescale configuration and alpha dynamics.
While the full solution generally requires numerical methods, the case c = 1 (i.e., linear
impact) allows for explicit analytical formulas.

Figure 1.3 (b) illustrates the impact trajectory for a two-timescale model for c1 =
c2 = 0.5 and τ1 = 0.5 and τ2 = 65 days. Compared to the single-timescale case,
the solution no longer consists of block trades at the beginning and end of the interval.
Instead, the impact builds up and decays more smoothly, reflecting the ability to exploit
the fast-decaying impact early on while gradually offsetting slower components. This
effect can be interpreted from equation 1.4.2 where the Lagrange multiplier in the last
term couples the two timescales, ensuring a gradual build-up of impact.

1.5 Trading with the wrong model: the cost of misspeci-
fying impact

Since all models are wrong the scientist must be alert to what is importantly
wrong.
— George Box (1976)

No matter how sophisticated the strategy, if it relies on the wrong impact model, it
can misfire. Assume linear impact when the reality is concave, and you may overestimate
costs. Assume impact decays too fast, and you may trade too aggressively. These
mismatches are not benign; instead, they can systematically undermine performance.

What happens when traders optimize their strategies using a misspecified
impact model, and how costly are these mistakes?

Having established the optimal execution strategies under the AFS model with one
exponential decay timescale, we now ask: What happens when these strategies are imple-
mented with a wrong price impact model? In particular, we quantify how misspecifying
either the concavity c or the impact decay timescale τ affects profitability.

The benchmark model used to evaluate the cost of misspecification is the AFS model
with a single exponential decay timescale and a concave power-law impact function.
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Based on empirical calibration results from the previous section, the best-fitting param-
eters for the price impact kernel for a single exponential decay are c∗ = 0.5 and
τ∗ = 0.5 day. These values serve as the ground truth when evaluating how suboptimal
it is to implement trading policies optimized under incorrect assumptions.

This framework allows us to precisely isolate and quantify the performance loss in-
curred when the execution engine relies on incorrect assumptions about market frictions.
By doing so, we can assess the sensitivity of optimal execution to each model compo-
nent. Suppose the true impact model is given by It = λ∗ sign(Jt)|Jt|c∗ , where Jt satisfies
dJt = − 1

τ∗
Jtdt+dQt. Here, λ∗ represents the push factor, which is no longer part of the

concave function simplifying the notation for subsequent calculations. The trader then
optimizes execution based on incorrect parameters c ̸= c∗ or τ ̸= τ∗. Such a mismatch
between belief and reality leads to a suboptimal impact trajectory J(c, τ), whose asso-
ciated performance we now evaluate under the true market dynamics. The P&L of the
misspecified policy J(c, τ) under the actual price impact model is:

U
(
J(c, τ); c∗, τ∗

)
= 1

λ∗
E
[

1
τ∗

∫ T

0

[
(αt − τ∗α′

t)Jt(c, τ) − λ|Jt(c, τ)|1+c∗
]

dt

+ αT JT (c, τ) − 1
1 + c∗

|JT (c, τ)|1+c∗

]
,

To isolate the roles of misspecifying concavity and decay we denote the realized P&L of
such a strategy under the true model as U(J(c, τ∗); c∗, τ∗) = U(J(c); c∗) and
U(J(c∗, τ); c∗, τ∗) = U(J(τ); τ∗), respectively.

Key Result 6: Cost of Concavity Misspecification

The expected P&L for the misspecified policy due to an incorrect estimate c of
the impact concavity c∗ is:

U
(
J(c); c∗

)
= σ V

g(c)1/c

[(
α

σ

)1+1/c ( T

τ∗(1 + c)1/c
+ 1

)

− g(c∗)
g(c)c∗/c

(
α

σ

)(1+c∗)/c ( T

τ∗(1 + c)(1+c∗)/c
+ 1

1 + c∗

)]
,

where g(c) = λ(c, τ∗) · V c/σ, σ is the daily return volatility and V is the daily
traded volume.

Implication: It is better to over-estimate c than to under-estimate it. An ex-
cessively concave model leads to overly aggressive trading and potential losses.
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1.5. TRADING WITH THE WRONG MODEL: THE COST OF MISSPECIFYING
IMPACT

Key Result 7: Cost of Impact Decay Misspecification

The expected P&L for the misspecified policy due to an incorrect decay τ when
the true decay is τ∗ is:

U
(
J(τ); τ∗

)
=σ V

τ∗

( 1 + τ/θ

g(τ)(1 + c∗)

)1/c∗ (
1 + τ∗

θ
− g(τ∗)(1 + τ/θ)

g(τ)(1 + c∗)

)
× lim

T →∞

1
T

[∫ T

0

∣∣∣∣αt

σ

∣∣∣∣1+1/c∗

dt

]
,

where g(τ) = λ(c∗, τ) · V c/σ.

Implication: It is better to under-estimate τ than to over-estimate it. Assuming
slow decay can result in overly aggressive trading that seeks to exploit inflated
prices from impact.

The analysis begins with the significance ratios as depicted in Figures 1.5 and 1.6
on the left. These figures illustrate how the R2 values are derived from models utilizing
different concavity c and decay timescale τ parameters, with the best point estimates
identified as ĉ = 0.5 and τ̂ = 0.3 days. For concavity, the significance ratio R2(c)/R2(ĉ)
is nearly symmetric around its optimal estimate, suggesting that the fit of the statistical
model is relatively stable across a range of c. In contrast, the significance ratio for the
decay timescale R2(τ)/R2(τ̂) displays more pronounced asymmetry, indicating a greater
sensitivity to variations in the decay parameter.

Next, the impact of these parameter misspecifications on profitability is shown. As
illustrated in Figures 1.5 and 1.6 on the right, the P&L ratios reveal a stark asymmetry
in economic outcomes. In Figure 1.5 (right), the P&L ratio U(J(c); c∗)/U(J(c∗); c∗)
drops sharply when c is underestimated, reflecting losses due to overly aggressive trading
under the false belief of weaker price impact. Overestimating c results in more cautious
strategies with relatively limited downside. This supports the intuition that assuming a
more linear (i.e., stronger) impact is safer from a profitability perspective.

In contrast, Figure 1.6 (right) shows that overestimating the impact decay timescale
τ , i.e. believing impact persists longer than it actually does, results in losses. Underes-
timating τ leads to more conservative strategies which, while suboptimal, do not incur
large losses. Again, the plot is asymmetrical, reinforcing the guidance to err on the
conservative side in model assumptions.

Together, these results show that high-quality model calibration is essential and
statistical goodness-of-fit is not enough. Using the wrong model, even if it is statistically
close, can have severe economic consequences.
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1.6 When assets talk to each other: impact in portfolios

Most real-world strategies involve trading multiple assets. These assets are often corre-
lated by economic exposure, sector, or investor behavior and trading one can move the
prices of others. This effect, known as cross-impact, was first measured by Pasquariello
and Vega (2013) using daily order imbalances and has since been further explored at the
intraday level in studies by Mastromatteo et al. (2017); Wang and Guhr (2017); Tomas
et al. (2022a); Le Coz et al. (2024). Additionally, Cont et al. (2021) examined it in
the context of combined order imbalance with top levels of the limit order book. These
findings suggest that cross-impact should be considered when executing portfolios. All
previously mentioned estimates were only performed on linear models with public data,
but instead our work made it evident that cross-impact of metaorders is indeed a con-
cave function. Figure 1.7 compares self- and cross-impact estimates on a log-log scale
for highly correlated asset pairs, showing that both are clearly concave functions.
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Figure 1.7: Average signed differences between the prices of asset j at the beginning and
end of metaorders for asset i, plotted against the size of the metaorders volume fraction
(|Q|/ADV )i in log-log scale. All asset pairs have a return correlation of more that 90%.
Self-Impact (blue) corresponds to i = j and cross-impact (orange) to i ̸= j.

Gârleanu and Pedersen (2016); Schied et al. (2010); Tsoukalas et al. (2019); Horst
and Xia (2019); Abi Jaber and Neuman (2022) derive optimal execution principles under
linear cross-impact models. However, no derivation has yet been made on how to trade
with a concave cross-impact function.

How should one optimally balance alpha and concave price impact across a
portfolio of correlated assets?

Motivated by the empirical fact in Figure 1.7, we propose a nonlinear, multivariate
generalization of the AFS model. Trades in d risky assets with positions
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Qt = (Q1
t , . . . , Qd

t )⊤ drive an exponentially weighted moving average

dJt = −BJtdt + ΛdQt, B, Λ ∈ Rd×d. (1.6.1)

The price impact across d assets It = (I1
t , . . . , Id

t )⊤ is then given by

It = Lh(Jt), L ∈ Rd×d (1.6.2)

where h(·) is applied element wise and typically takes the form h(x) = sgn(x)|x|c with
c ∈ (0, 1]. The matrices L and Λ encode the structure of the liquidity factors and return
correlations, whereas B captures the dynamical properties of impact decay.

To derive the optimal execution strategy, we consider again the risk-neutral objective
that needs to be optimized with respect to trade volume:

sup
(Qt)t∈[0,T ]

E
[∫ T

0
(αt − It)⊤dQt

]
= sup

(Jt)t∈[0,T ]

E
[ ∫ T

0

(
ᾱ⊤

t Jt − h(Jt)⊤ζJt

)
dt

−
∫ T

0
h(Jt)⊤θdJt + α⊤

T Λ−1JT

]
.

(1.6.3)

where the second equation mapped again to impact space and the following matrices
are introduced

ζ = L⊤Λ−1B, θ = L⊤Λ−1, ᾱt = ζ⊤L−1αt − θ⊤L−1α′
t. (1.6.4)

The term h(J i
t )dJ j

t has no common anti-derivative when i ̸= j, making the general
problem intractable.

Cross-impact models inflate the number of fitting parameters and can exploit arbi-
trage opportunities if not modeled properly, particularly when liquidity differs across
assets. If trades in one asset can move others, then price manipulation can be possible;
a trader could push the price of an illiquid instrument and exploit the resulting move
in a correlated more liquid one. Abi Jaber et al. (2024); Alfonsi et al. (2016); Schneider
and Lillo (2019); Tomas et al. (2022b) study the properties of linear impact models to
be arbitrage-free. It was still left to answer

What conditions must a concave cross-impact model satisfy to remain manipulation-
free?

These constraints serve as necessary guidelines for building realistic, tractable and
arbitrage-free models for multi-asset execution and, in fact, reduce the number of pos-
sible models by a significant amount. In the framework of the multivariate AFS-model
we derive conditions on θ and ζ that ensure the absence of price manipulation.

Once the no-manipulation conditions are imposed, the optimization problem be-
comes well defined. However, it still involves a nonlinear and generally non-convex
objective function. In this setting, closed-form solutions can only be derived under
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structural assumptions that simplify the interaction between assets.

Key Result 8: No-Manipulation Constraints

Absence of price manipulation implies:

• For symmetric round-trip strategies that the matrix ζ satisfies

0 < ζ̄aa + ϕ1+c − ϕcζ̄ab − ϕζ̄ba, ∀ϕ ≥ 0, (1.6.5)

where ζ̄ab = ζab/ζbb. If ζ has positive eigenvalues, then this condition always
holds.

• For impulsive pump-and-dump strategies that the matrix θ satisfies

0 < −θab(µa − µb) − θba(µb − µa)
(

σb

σa

)1−c((σa)2 + c(σb)2

c(σa)2 + (σb)2

)3/2

. (1.6.6)

where σa and σb control the trade speed and µa and µb the execution time
in asset a and b respectively. This requires θ to be symmetric if c = 1 and
diagonal if c < 1

Key Result 9: Optimal Trading Strategies in Solvable Cases

• Decoupled Case: If θ and ζ are both diagonal,

I∗
t = 1

1 + c

(
αt − Lζ−1θ⊤L−1α′

t

)
. (1.6.7)

• Bivariate Case: With two assets, the optimal solution satisfies a cubic
equation in ϕt = J1

t /J2
t :

0 = ϕt + sgn(ϕt)|ϕt|ck1
t + sgn(ϕt)|ϕt|c−1k2

t + k3
t . (1.6.8)

where k1
t , k2

t , k3
t are functions of ζ and ᾱt. Uniqueness of the solution

cannot be guaranteed.

• General Case with Small Cross Terms: For small off-diagonal elements
ζij = ζ, ∀i ̸= j,

I∗
t ≈

d∑
a=1

La
ᾱa

t

ζaa(1 + c)

1 −
∑
b̸=a

sgn(ᾱb
t)ζ

c(1 + c)

c

∣∣∣∣∣ ᾱb
t

ᾱa
t

∣∣∣∣∣
1/c

+
∣∣∣∣∣ ᾱb

t

ᾱa
t

∣∣∣∣∣
c

. (1.6.9)

If both matrices θ = L⊤Λ−1 and ζ = L⊤Λ−1B are diagonal, the multivariate
optimization problem decomposes into a system of d independent univariate problems.
This case, although seemingly restrictive, still captures rich cross-impact effects through
the structure of L and Λ, such as when both are derived from the asset return covariance
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matrix. Although the optimization problem decouples, the trading strategy itself still
reflects cross-asset interactions: price impact in each asset aggregates effects from all
latent liquidity factors.

When d = 2, the pointwise maximization problem remains analytically tractable
despite the presence of off-diagonal cross-impact. The solution is governed by a nonlinear
implicit equation for the ratio of the two impact states. The resulting problem admits a
finite number of candidate solutions (e.g., six for c = 1/2), although uniqueness may not
always hold. In practice, this regime is particularly relevant as cross-impact between two
assets already arises in many execution settings (e.g., calendar spreads, sector hedging).

When ζ is close to diagonal (i.e., off-diagonal entries are small), the multivariate
objective remains strictly concave on a compact set, ensuring the existence and unique-
ness of the optimizer. The first-order conditions can be solved perturbatively using the
implicit function theorem. The solution shows how small levels of cross-impact lead to
lower optimal impact states when latent alpha signals are aligned, which in turn allows
more efficient trading across correlated instruments.

1.7 From model to market: estimating cross-impact em-
pirically

The dynamic decay of self-impact has been widely documented as mentioned before.
But the properties of cross-impact concavity and decay were still not fully evaluated,
which leads us to ask:

What are the dynamical properties of cross-impact induced by metaorders,
and how does it depend on return correlation?

The no-manipulation constraints, derived earlier, ensure that only an arbitrage-free
model can be calibrated, which is crucial for execution strategies that must avoid market
manipulation. Additionally, these constraints significantly reduce the number of fitting
parameters, enabling us to achieve the first reliable estimation of a concave, dynamic
cross-impact model. This approach allows for the joint calibration of the concavity,
decay, and amplitude of cross-impact using proprietary metaorder data.

For simplicity and to ensure a tractable calibration procedure that respects the no-
manipulation conditions, we restrict our focus to fitting impact pairs and assuming the
matrix of decay rates is in a diagonal form, θ−1ζ = β · Id2, which introduces a single
shared decay parameter β across the two liquidity factors. This assumption decouples
the latent impact dynamics across factors and leads to the following simplified model:

It =
2∑

a=1
La h(θ−1

aa ) h(Ja
t ), where Ja

t =
∫ t

0
e−β(t−s)d(LT Qs)a. (1.7.1)

where only the 2 diagonal elements of θ need to be fitted. There still remains
flexibility in choosing L to satisfy the no price manipulation constraints. To ensure that
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ENHANCEMENT

the model admits desirable properties, such as treating fully correlated assets as identical
and the ability to handle large heterogeneity in liquidity, we derive a method inspired
by del Molino et al. (2020), which bases L on total order flow and return covariances.

Using proprietary metaorder data, we quantify concave cross-impact and its decay
dynamics across asset pairs. Our main empirical findings are as follows:

Key Result 10: Measuring Concave Cross-Impact

• Cross-impact is concave.

• Cross-impact decays over time.

• Cross-impact contributions grow with correlation.

The best-fit concavity lies between c = 0.5 and 0.7, consistent with the square-root
law. The decay is well captured by an exponential function with rate β ∈ [0.1, 0.9],
corresponding to half-lives of 0.7 to 7 days. For highly correlated pairs, cross-impact
can represent up to 50% of total trading costs.

1.8 When data is not enough: synthetic metaorders and
data enhancement

Estimating impact kernels, especially cross-impact, requires a large amount of data. But
in many cases, proprietary datasets contain only sparse metaorder activity across assets.
This makes a reliable estimation difficult. Inspired by the empirical findings of Maitrier
et al. (2025b); Sato and Kanazawa (2024) that the square-root law can be recovered
when knowing the Trader ID in the public trade data and reassembling metaorders,
Maitrier et al. (2025a) introduced a novel method to generate synthetic metaorder data.
These metaorders have not been used to measure cross-impact yet, so the question arises

Can we enhance the dataset through synthetic metaorders or public order
flow?

To answer this question, a non-parametric impact model is introduced next to esti-
mate cross-impact on a sparse dataset.

1.9 Beyond the model: estimating impact without assump-
tions

Most execution strategies begin with an assumption about impact, i.e. linear, exponen-
tial, permanent, transient. But with sufficient data, we can now let the data speak for
itself. In Neuman and Zhang (2023), a non-parametric estimation method for a linear
impact kernel was introduced, where the estimation occurs in an online learning frame-
work. Neuman et al. (2023) proposed an offline estimator based on historical trade and
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price data and derived optimal convergence rates for this estimator. This framework
allows to estimate an impact kernel non-parametrically, directly from trade data.

What does price impact look like when we do not assume a model – can
impact decay really described by a power-law?

In the univariate case, the observed price Pti evolves as a function of past trade sizes
Qtj via a discrete-time convolution model:

Pti+1 − Pt1 =
i∑

j=1
Gi−j h(Qtj ) + ϵti , i = 1, . . . , M, (1.9.1)

where h(x) = sgn(x)|x|c is a concave impact function and Gi−j represents a convolution
kernel evaluated at lag i − j and there are M timesteps in total. No assumption is made
on the shape of the kernel beyond convexity constraints. Estimation is performed via
constrained least squares with regularization, and a confidence bound is derived for the
resulting estimator. Non-parametric kernel estimation reveals the empirical structure of
price impact without assuming a model.

To overcome data scarcity in the CFM proprietary data, we design a metaorder
proxy mechanism that reconstructs synthetic metaorders from public trade data. The
augmented dataset is used to stabilize the estimation and reveal temporal structures in
the kernel that are otherwise obscured by noise.

Key Result 11: Impact Without Structural Assumptions

• Concave impact functions (c ≈ 0.6) consistently outperform linear ones in
predictive accuracy;

• The estimated impact kernel decays smoothly over time and follows a power-
law form;

• Proxy metaorders improve kernel smoothness and capture long-range tem-
poral effects otherwise obscured by noise.

Figure 1.8 shows how kernel estimation improves when the dataset is augmented
with synthetic metaorders. The estimate based solely on proprietary Corn futures data
(orange) is noisy and irregular, whereas the enhanced dataset (blue) yields a smoother
propagator that more clearly captures the temporal decay of impact.

1.10 From one to many: a non-parametric estimate of a
cross-impact model

Although most real-world strategies involve portfolios of correlated assets, most empir-
ical and theoretical work on price impact has focused on single-asset settings or makes
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1.10. FROM ONE TO MANY: A NON-PARAMETRIC ESTIMATE OF A
CROSS-IMPACT MODEL
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Figure 1.8: Estimated price impact kernel Gt−t1 using CFM proprietary data only (gray)
and the enhanced dataset including synthetic metaorders (blue).

strong assumptions on the cross-impact model. Cross-impact has been observed empir-
ically in Le Coz et al. (2024) where they reveal clear asymmetries: liquid assets exert
stronger influence on illiquid ones than the reverse. Yet, existing models often impose
restrictive structural assumptions, such as linearity Tomas et al. (2022a), symmetry Hey
et al. (2024b), or specific decay forms Hey et al. (2025), limiting their descriptive power
and flexibility.

In a sense, what we seek is a non-parametric lens through which to observe the true
shape of cross-impact including its inherent asymmetries driven by liquidity imbalances.
This step is critical if we hope to relax the structure of current parametric models, just
as we extended the AFS model in the single-asset case to capture decay across multiple
time scales.

To that end, we extend the non-parametric estimator of Neuman et al. (2023) to the
multivariate setting with concave price impact. This yields the first fully data-driven
estimation of cross-impact kernels across multiple assets without assuming linearity,
symmetry, or functional decay. The only structural constraint imposed is the convexity
of the convolution kernel, which is a necessary condition for ruling out price manipula-
tion.

How does cross-impact behave in practice when we do not impose properties
or assume a model and how can we estimate it reliably in a multivariate
setting?

To estimate cross-impact, we model the return of an asset a1 ∈ {0, d} via a multi-
variate convolution of lagged volumes:

P a1
ti+1 − P a1

t1 =
d∑

a=1

i∑
j=1

G
(a1,a)
i−j h(Qa

tj
) + ϵa1

ti
, i = 1, . . . , M, (1.10.1)

where h(x) = sgn(x)|x|c is the concave impact function and G
(a1,a)
i−j is the impact of past

trades in asset a ∈ {0, d} on asset a1. The price impact contribution therefore becomes
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a weighted sum of trades over all d assets under consideration.
The kernel is estimated from N metaorders across d assets by solving a regularized

least-squares problem:

(Gv)N,λ := arg min
Gv∈Gad

(
N∑

n=1

∥∥∥y(n) − U(n)Gv

∥∥∥2
+ λ ∥Gv∥2

)
, (1.10.2)

where U(n) encodes the lagged, concave-transformed volume vectors across all assets for
metaorder n, y(n) is the vector of observed returns, Gv is the vectorized form of the
multivariate kernel belonging to a set of admissible kernels Gad that enforces convexity
and decay and λ is the regularization parameter. The findings on the confidence bound
and the empirical estimation are summarized as follows:

Key Result 12: Estimating a Non-Parametric Cross-Impact Ker-
nel

• The estimation error satisfies a confidence bound that scales in
O(
√

Md2 log(1/λ)), highlighting the increased data requirement for mul-
tivariate kernels;

• Including cross-impact terms improves predictive accuracy: out-of-sample
R2 increases from 4.8% (self-only) to 6.3% (2 assets) and 6.5% (3 assets);

• The estimated kernels reveal asymmetries: more liquid contracts exert
stronger and more persistent impact on less liquid ones.

These results confirm that cross-impact is not only present but informative: including
other assets’ trade flow improves forecasts. Moreover, relaxing symmetry assumptions
reveal structural asymmetries aligned with market microstructure: front-month con-
tracts tend to lead, and less liquid contracts absorb more impact. The framework
provides a practical tool for portfolio execution and lays the groundwork for optimal
control in concave multivariate impact models.

1.11 Outline

This manuscript is organized as follows.
Chapter 2 introduces the theoretical framework of concave price impact with tran-

sient effects. Section 2.3 formulates the optimal trading problem as a stochastic control
problem, and Section 2.4 derives explicit solutions by mapping the problem into impact
space, discussing price manipulation constraints, risk aversion. Section 2.5 generalizes
the model to multiple decay timescales. The chapter concludes with an empirical anal-
ysis in Section 2.6 that validates these theoretical results on proprietary data and also
explores the impact properties when using the public tape in Section 2.6.6.

Chapter 3 focuses on the consequences of model misspecification. In practical set-
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tings, execution strategies often rely on simplified impact assumptions. This chap-
ter quantifies the cost of using an incorrect model by first introducing an analytically
tractable control problem in Section 3.2 and then estimates the parameters of the impact
model on proprietary data in Section 3.3. The sensitivity of performance to misestimated
concavity and decay is analyzed in Section 3.4 where explicit formulas for performance
loss and highlights the asymmetry in misspecification costs are derived.

Chapter 4 extends the single-asset framework to the multi-asset setting with concave
cross-impact. The AFS model is extended to a multi-dimensional framework in Section
4.2 and the trader’s objective function is presented in Section 4.3. Since this function
is not generally pointwise solvable, Section 4.5 discusses sufficient conditions for the
absence of price manipulation in this nonlinear cross-impact setting. Section 4.6 provides
a decomposition of solutions to the optimal control problem. The empirical section 4.7
applies the model to metaorder data and identifies the dependence of cross-impact with
respect to return correlation. It also validates that cross-impact is indeed concave and
it decays.

Chapter 5 turns to a non-parametric estimation of cross-impact kernels. Rejecting
predefined decay shapes, Section 5.2 extends an offline learning method to estimate
impact directly from metaorder data. To address fitting problems such as data scarcity,
the proprietary dataset is enhanced by synthetic metaorders whose synthetic generation
is introduced in 5.3.2. Other aspects of the fitting procedure are introduced in 5.3.3.
The results in 5.3.4 confirm power-law decay in self-impact, document asymmetric cross-
impact, and demonstrate that correlation between assets amplifies cross-effects. This
chapter bridges the gap between flexible empirical fitting and the more structured models
of previous chapters.
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Chapter 2

Trading with Concave Price
Impact and Impact Decay

Summary

We study statistical arbitrage problems accounting for the nonlinear and transient
price impact of metaorders observed empirically. We show that simple explicit
trading rules can be derived even for general nonparametric alpha and liquidity
signals, and also discuss extensions to several impact decay timescales. These
results are illustrated using a proprietary dataset of CFM metaorders, which
allows us to calibrate the levels, concavity, and decay parameters of the price
impact model and analyze their effects on optimal trading.

Based on Hey et al. (2025): N. Hey, I. Mastromatteo, J. Muhle-Karbe, and K.
Webster. Trading with Concave Price Impact and Impact Decay – Theory and
Evidence. Operations Research, 2025.

2.1 Introduction

Trading costs play a central role in designing and implementing quantitative trading
strategies. Indeed, Loeb (1983) refers to them as the “critical link between investment
information and results”. 40 years later Harvey et al. (2022) still write that “market
impact costs are a crucial component of strategy performance – yet these costs are
routinely ignored in most academic research studies.”

For sizable funds, the crucial concern is their trades’ adverse price impact.1 It is well
known that impact is concave in trade sizes, in that large trades have a smaller impact

1For instance, Frazzini, Israel, and Moskowitz (2018) use proprietary data of AQR, a major quan-
titative fund, to estimate their trades’ price impact. They find price impact costs to be an order of
magnitude larger than other costs such as the effective bid-ask spread. These results align with many
other practitioner studies. For instance, Nasdaq’s “Intern’s Guide to Trading” (Mackintosh, 2022) also
finds price impact for institutional trades to be an order of magnitude larger than spreads.
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than predicted by a linear model and are instead better described by a “square-root
law”.2 Price dislocations are also not static but gradually dissipate over time.3

A key practical challenge is how to make these robust statistical findings “action-
able” by embedding them into a consistent stochastic control problem. There is a large
and active literature that studies optimal trading with price impact but, for tractability,
these studies typically either assume price impact to be linear (Gârleanu and Pedersen,
2013, 2016) or to decay instantaneously (Almgren, 2003). In contrast, for models with
nonlinear and transient price impact, even basic qualitative properties such as the ab-
sence of price manipulation are typically poorly understood (Gatheral, 2010). A notable
exception is the model of Alfonsi, Fruth, and Schied (2010) (henceforth AFS), where an
optimal execution problem is solved explicitly.

The present study shows that the AFS model, with nonlinear price impact and
impact decay, also admits closed-form solutions for general statistical arbitrage problems
with arbitrary alpha signals and stochastic liquidity parameters.4 For capacity- rather
than risk-constrained traders,5 this yields simple and intuitive trading rules that apply
to general nonparametric price and liquidity forecasts in a straightforward manner,
bypassing the need for any brute-force optimization.

We derive these results by a change of variables to “impact space”, where the trader’s
control variable is the aggregate impact of their current and past trades rather than the
position held. This change of perspective was pioneered by Fruth, Schöneborn, and
Urusov (2013) for linear impact models. Here we show that this approach also allows
one to reduce the analysis of general AFS models to simple pointwise optimizations,
that in turn lead to closed-form expressions for the optimal trading rules. An auxiliary
benefit of the method is the derivation of sharp conditions to rule out price-manipulation
strategies.6 Finding such practical, measurable, and implementable conditions guaran-
teeing the good behavior of live trading algorithms is another core concern of execution
teams at major financial institutions.

The passage to impact space is crucially tied to the existence of a one-to-one map
between holdings and the corresponding impact. This is guaranteed when impact decays
at a constant exponential rate as in Obizhaeva and Wang (2013). However, many
empirical studies find price impact to decay over multiple timescales not captured by a
single exponential rate.

2Cf., e.g., Loeb (1983); Hasbrouck (1991); Hasbrouck and Seppi (2001); Lillo et al. (2003); Bouchaud
et al. (2004); Almgren et al. (2005); Gabaix et al. (2006); Bershova and Rakhlin (2013); Frazzini et al.
(2018) or the textbooks Bouchaud et al. (2018); Webster (2023) and the references therein.

3Cf., e.g., Hasbrouck (1991); Biais et al. (1995); Coppejans et al. (2004); Degryse et al. (2005);
Bouchaud et al. (2009b); Bacry et al. (2015); Brokmann et al. (2015) and the references therein.

4Stochastic liquidity parameters are a tractable proxy for the “local concavity” of the price impact of
individual trades (Muhle-Karbe, Wang, and Webster, 2024), which can in turn be aggregated into the
analysis of impact’s “global concavity” at the metaorder level in the present study.

5Busse et al. (2020) show that capacity constraints are a concern even for mutual funds, forcing them
to reduce their rebalancing frequencies and shift investments to more liquid instruments.

6Gatheral (2010) first defined and studied price manipulation conditions for a class of price impact
models.
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To incorporate this, we show that our approach can be extended to price impact
models with multiple decay timescales. The core idea is to switch to impact space and
optimize pointwise separately on each timescale, but simultaneously enforce a consis-
tency constraint that the respective impacts correspond to the same trades. The optimal
impact state is then again available in closed form, up to solving an autonomous “de-
coupling” ODE for the constraint’s Lagrange multiplier.

To illustrate the relevance of our modeling choices and explore the implications of
our results for optimal trading strategies, we complement this theoretical analysis with
a detailed empirical study on proprietary Capital Fund Management (CFM) metaorder
data. Specifically, we fit impact levels, concavities, and magnitudes for AFS models
across multiple decay timescales. This bridges the gap between sophisticated nonpara-
metric empirical studies (which are difficult to translate into optimal trading strategies)
and the stochastic control literature (which often studies models lacking empirical foun-
dation). A model with two impact timescales (one fast and one slow) generally offers
the best trade-off between accuracy and parsimony. For the corresponding concavities,
the best power-law specification is close to a square-root law across all timescales. These
empirical results emphasize that the scope of our theoretical analysis is not merely an
academic exercise, but incorporates salient features of empirical data.7

QT

I T

0 T 2T

I
∗ t

Figure 2.1: Optimal impact for constant alpha signals as a function of optimal traded
volume (left panel) and time (right panel).

Using our theoretical results, optimal trading strategies taking into account these
empirical features can be derived in a straightforward manner. Figure 2.1 illustrates
their main qualitative properties. The left panel plots the optimal peak impact IT at the
end of the trading interval [0, T ] against the corresponding optimal order size QT . This
illustrates that square-root concavities in the AFS model indeed generate the square-root
law for metaorder impact observed empirically. The right panel of Figure 2.1 displays
the temporal evolution of the optimal impact state It for a constant alpha signal during

7Previous empirical studies of impact concavity often focus on “static” settings where the price change
during the metaorder is regressed against its size without taking into account impact decay. Conversely,
impact decay is typically studied in propagator models where concavities are considered at the fill- rather
than the metaorder level. The empirical results we report provide consistent estimates for both effects
in the AFS framework.
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and after the completion of the trading period [0, T ]. During the trading period, impact
builds up as the alpha signal at hand is gradually exhausted: there is an initial jump
caused by an initial block trade, then impact increases gradually until another jump
corresponding to a second block trade at the terminal time T . After the completion
of the order, this peak impact decays. For the fast and slow impact decay timescales
calibrated in our empirical analysis, a substantial proportion of the peak impact at the
end of the trading period decays very quickly, but the remaining impact decays much
more slowly, in that it is still substantial at time 2T , for example.

Outline

This paper is organized as follows. Section 2.2 introduces the price impact model,
and Section 2.3 formulates the corresponding risk-neutral stochastic control problems.
Section 2.4 describes the explicit optimal strategies that can be obtained by changing
variables to “impact space”, and Section 2.5 extends this method to multiple impact
decay timescales. These theoretical results are complemented by the empirical analysis
in Section 2.6, where the models are fit to proprietary trading data. For better read-
ability, the derivations of the theoretical results are collected in Appendix A. Finally,
Appendix B outlines to what extent fitting results obtained from proprietary metaorder
data can be reproduced using suitable proxies derived from the public trading tape
alone.

Notation

Throughout, we fix a filtered probability space (Ω, F , (Ft)t∈[0,T ],P) with finite time
horizon T > 0.

2.2 Price Impact Model

Price impact models describe how prices causally depend on trades. To formalize this,
let (St)t∈[0,T ] be the “unaffected” (or “fundamental”) mid-price process in the absence
of trading. If (Qt)t∈[0,T ] denotes the holdings of one (or several) large trader(s), the
observed market mid-price is

Pt(ω, Q) = St(ω) + It(ω, Q).

Here, the notation stresses that St(ω) describes price changes that happen independently
of the large trader’s actions, e.g., due to external news. In contrast, the price impact
term It(ω, Q) can depend both on external randomness and large traders’ present and
past actions (Qs)s∈[0,t]. (We suppress the dependence on the random state ω ∈ Ω from
now on as usual.)
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Alfonsi, Fruth, and Schied (2010) (henceforth AFS) proposed a price impact model
that captures the nonlinear and transient nature of price impact while remaining ana-
lytically tractable:8

Definition 2.2.1 (AFS price impact model). The price impact of a strategy (Qt)t∈[0,T ]

is
It = h(Jt).

Here, the impact function h ∈ C2 is increasing, odd, and concave on [0, ∞). Its argument
is defined as an exponential moving average of current and past trades

dJt = − 1
τt

Jtdt + λtdQt, J0 = 0,

The timescale (τt)t∈[0,T ] over which impact decays and the push factor (λt)t∈[0,T ] can be
time dependent and random.

When the price impact function is the identity (h(x) = x), this recovers the model of
Obizhaeva and Wang (2013), where each trade causes linear price impact proportional
to “Kyle’s lambda” λt, and subsequently decays at a timescale governed by τt.

If, more generally, the price impact function h is smooth and concave on [0, ∞), then
small trades dQt still have approximately linear instantaneous impact dIt = h′(Jt)λtdQt,
but the overall impact of large trades Qt is sublinear in line with the crossover from linear
to square-root impact documented empirically by Bucci et al. (2019b). Indeed, as trades
and in turn the moving average Jt accumulate, the linear impact h′(Jt)λtdQt becomes
smaller by concavity of the impact function h(x). This also leads to sublinear impact
for metaorders that are executed gradually over time (large block trades evidently have
a direct sublinear impact).

Remark 2.2.2. Obizhaeva and Wang (2013) motivated their linear price impact model
with a flat limit-order book. Analogously, nonlinear price impact functions can be derived
from a limit order book with non-constant density (Alfonsi et al., 2010; Carmona and
Webster, 2019).

The connection between the order book and price impact is that the order book maps
prices to marginal trading volumes. When one derives the price impact model from an
order book shape, Jt measures a trade’s volume impact on the order book. The exponen-
tial moving average corresponds to the “resilience” of the order book, which gradually
recovers due to new incoming limit orders. One then uses the order book shape to map
this volume impact back to a price impact.

Note, however, that the impact function h(x) cannot simply be read off the cumulated
state of the current order book. Instead, at lower frequencies, it is a reduced form model
for the latent order book (Tóth et al., 2011; Donier et al., 2015), which encodes the

8Alfonsi et al. (2010) leverage this tractability to solve an optimal execution problem. In the present
study we show that statistical arbitrage problems with general alpha signals and stochastic liquidity
parameters also admit closed-form solutions.
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latent portion of the demand and supply curve that has not yet materialized into the
visible order book.

Example 2.2.3. As a concrete example, fix x0 > 0 and suppose that

h(x) =

x, |x| ≤ x0,

sgn(x)
√

2|x|x0 − x2
0, |x| > x0.

Then, volume impacts smaller than the threshold x0 shift prices linearly, whereas the
price impact of large trade imbalances scales with the square root of the volume impact.
The location and scale parameters in the square root function are chosen to ensure value
matching and smooth pasting between these two regimes, compare Figure 2.2.

−4 −2 0 2 4
x

−4
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0

2

4

h
(x

)

Figure 2.2: The price impact function h(x) from Example 2.2.3 for x0 = 1 (solid blue)
and the identity function h(x) = x (dashed orange) from the linear impact model of
Obizhaeva and Wang (2013).

2.3 A Stochastic Control Problem for Trading

We now turn to optimal trading with concave price impact. For simplicity, we focus on
a single large trader who controls the holdings (Qt)t∈[0,T ]. Additional “external flow” of
other market participants could be added similarly as in Muhle-Karbe et al. (2024), but
we do not spell this out here to not overload the notation.

2.3.1 Self-Financing Equation

When the large trader’s holdings vary smoothly, i.e., Qt =
∫ t

0 Q̇sds for a finite “trading
rate” Q̇t = dQt/dt, then trades dQt = Q̇tdt are settled at
St + h(Jt + dQt) = St + h(Jt) + O(dt). Accordingly, the trader’s cash balance from con-
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tinuous trading on [0, t] is given by9

Yt = −
∫ t

0
(Su + Iu)dQu = −QtSt +

∫ t

0
QudSu −

∫ t

0
h(Ju)dQu.

Here, the first integral describes the standard gains and losses from frictionless continuous-
time trading. The second integral accounts for additional price impact costs.10

2.3.2 Risk-Neutral Objective Function

The most tractable objective function in this context is to maximize expected returns
net of transaction costs. Note that superlinear price impact costs automatically impose
an endogenous capacity constraint. Therefore, such risk-neutral optimization problems
are typically well-posed.

Definition 2.3.1 (Risk-neutral intraday trading). A risk-neutral intraday trader solves
the stochastic control problem

sup
Q

E [YT + QT ST ] (2.3.1)

= sup
Q

E
[∫ T

0
QtdSt −

∫ T

0
h(Jt)dQt

]
.

Here, the trader values their end-of-day position at the unaffected price rather than the
market price. This avoids illusory gains caused by pushing up prices when entering a po-
sition (Caccioli et al., 2012; Kolm and Webster, 2023). To avoid such misleading profits,
traders minimize arrival slippage and ignore mark-to-market P&L, in line with (2.3.1).

Remark 2.3.2. The portfolio optimization problem (2.3.1) has three main limitations:
(i) there is a fixed terminal time T , (ii) positions still held at time T are valued at the
unaffected price rather than penalized with an additional liquidation cost (or required to
be zero), and (iii) there are no size or risk constraints on positions held over time.

Whereas the fixed time horizon is natural for optimal execution problems, one can
relax it for “stat arb” problems by passing to the ergodic version of the problem (2.3.1).
This means that one considers the performance per unit time, and then postpones the
terminal time indefinitely.

Requiring the terminal position to be zero can be incorporated through a Lagrange
multiplier. This does not complicate the analysis much if all model parameters are

9Here, the second equality follows from integration by parts. Note that for smooth trades the distinc-
tion between the price impact before and after their execution vanishes. This differs for discrete block
trades or holdings “wiggling like Brownian motion”. Section 2.4 avoids the corresponding cumbersome
bookkeeping equations by directly approximating the performance of such strategies “in impact space”.

10This budget equation assumes that trades settle at the mid-price and thus neglects the contribution
of bid-ask spreads to transaction costs. As discussed in the introduction, this is justified for large,
capacity- rather than risk-constrained actors, for which impact costs dominate spread costs. For high-
frequency strategies that are even more capacity constrained due to the fast decay of the corresponding
trading signals, spread rather than impact costs become the main concern.
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deterministic, but rules out explicit solutions with stochastic liquidity parameters for ex-
ample. Requiring liquidation over a longer time horizon, directly, imposing a liquidation
cost, or adding a penalty on inventory held over time all make it impossible to reduce
the maximization to a pointwise problem as in Section 2.4. We comment on the main
qualitative changes induced by such risk penalties for models with linear price impact in
Section 2.4.3 below.

A helpful statistic to simplify the risk-neutral portfolio optimization problem (2.3.1)
is the so-called intraday alpha signal11

αt = Et [ST − St] = Et[ST ] − St.

This signal predicts intraday returns the trader doesn’t cause. For a risk-neutral trader,
an alpha signal is a sufficient statistic of the unaffected price St. Indeed, an integration
by parts and αT = 0 yield E[

∫ t
0 QsdSs] = E[

∫ t
0 αsdQs] for smooth strategies dQt = Q̇tdt.

The risk-neutral intraday objective (2.3.1) in turn can be written as

sup
Q

E
[∫ T

0
(αt − h(Jt))dQt

]
. (2.3.2)

That is, in expectation, each trade earns alpha but pays price impact.

A long-term trader may also have views on returns beyond the trading day. The
risk-neutral objective (2.3.1) can be extended to incorporate such long-term views as
follows:

Definition 2.3.3 (Risk-neutral long-term trading). A risk-neutral long-term trader
solves the stochastic control problem supQ E [YT + ST ′QT ] for some time T ′ > T .

A risk-neutral long-term trader still tracks an alpha signal

αt = Et [ST ′ − St] ,

but the end-of-day constraint αT = 0 no longer applies in this case. With this notation,
the representation (2.3.2) of the risk-neutral goal functional still applies. The only dif-
ference is that the long-term alpha does not vanish at the end of the trading day.

For simplicity, we henceforth assume that the alpha signal αt is an Itô process and
denote its drift rate by µα

t . Traders typically refer to αt as the alpha level and to
−µα

t as the alpha decay. Examples 2.3.5 and 2.3.6 below specify standard parametric
alpha signals. Example 2.3.7 covers the increasingly common non-parametric case. In
particular, this applies to modern machine-learning approaches in alpha research and
showcases the advantage of our explicit trading formulas from Theorem 2.4.2 for general
non-parametric signals.

11Some traders refer to αt as the cumulative alpha over [t, T ].
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Example 2.3.4 (Constant alpha). Constant signals arise naturally when modeling trad-
ing catalysts. Indeed, suppose that on the trading interval [0, T ], the price St is a mar-
tingale and reveals no further information about a price change that happens afterward,
Et[ST ′ − ST ] = E[ST ′ − ST ] > 0. Then:

αt = E [ST ′ − ST ] , for all t ∈ [0, T ].

Signals based on financial catalysts such as earnings announcements naturally exhibit
such sharp boundaries.

Example 2.3.5 (Deterministic alpha). The trading signal αt can be deterministic even if
the unaffected price St is stochastic. For instance, a constant drift rate of the unaffected
price dSt = µdt + σdWt translates to the deterministic intraday alpha signal
αt = µ(T − t). In the long-term case, the alpha signal equals αt = µ(T ′ − t).

Example 2.3.6 (Ornstein-Uhlenbeck alpha). If the unaffected price process has Itô
dynamics dSt = µtdt + σtdWt, then the alpha decay −µα

t equals the drift rate µt. The
most common specification is to model this as an Ornstein-Uhlenbeck process
dµt = −θ−1µtdt + ηdWt.12 Then, the intraday alpha is

αt =
∫ T

t
Et[µs]ds =

∫ T

t
e−(s−t)/θµtds

= (1 − e−(T −t)/θ)θµt.

For a long-term trader predicting the steady-state alpha (T ′ → ∞), we have αt = θµt.
In particular, both the alpha and the alpha decay are stochastic in this case.

Example 2.3.7 (Non-parametric alpha). Examples 2.3.5 and 2.3.6 are convenient to
derive analytical results. However, practitioners rarely fit two-parameter alpha signals.
Instead, they increasingly rely on non-parametric models with hundreds or thousands
of features. In particular, the last decade saw the rise of machine learning models for
alpha research. For example, Cont et al. (2021); Kolm et al. (2023) use various neural
network architectures to construct alpha signals from limit order book events.

Therefore, most quantitative strategies treat alpha signals as generic functions or pro-
cesses. For instance, a portfolio optimization or trading algorithm may abstract away an
alpha model’s parameters and rely on a stream of alpha levels αt and decays −µα

t . Solv-
ing control problems in this non-parametric regime therefore is a crucial differentiation
between toy models and practical algorithms.

2.4 Solution by Mapping to Impact Space

We now turn to the solution of the risk-neutral trader’s optimization problem (2.3.2).
Section 2.3.2 derives the objective function (2.3.2) for smooth strategies Qt =

∫ t
0 Q̇sds.

12For example, such specifications are used by Gârleanu and Pedersen (2013) and many other academic
and practitioner papers.
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This is sufficient when trading signals αt vary smoothly over time. However, diffusive
trading signals as in Example 2.3.6 naturally lead to diffusive trades. Moreover, block
trades also naturally appear unless the trader’s initial holdings perfectly align with the
initial signal.

At first glance, it seems appealing to approximate the P&L of such more general
strategies by the P&Ls (2.3.2) of an approximating sequence of smooth strategies. How-
ever, the trading rates Q̇t = dQt/dt blow up in any such approximation. Consequently,
one can no longer neglect the impact of the current trades on the corresponding exe-
cution price. Therefore, without a more precise micro-description of price impact, it is
not straightforward to extend the classic self-financing equation to the limits of such ap-
proximating sequences. However, the approximation argument carries through without
problems if one first recasts the problem in “impact space”:

Theorem 2.4.1 (Mapping to impact space). Assume the push factor is of the form
λt = eγt for a smooth process γt. The trader’s stochastic control problem (2.3.2) in
holdings Qt is equivalent to the following control problem in “volume impact” Jt:

sup
(Jt)t∈[0,T ]

E
[ ∫ T

0
e−γt

(
− µα

t Jt + (τ−1
t + γ′

t)αtJt (2.4.1)

− τ−1
t h(Jt)Jt − γ′

tH(Jt)
)
dt

+ e−γT (αT JT − H(JT ))
]
.

13 For a volume impact process (Jt)t∈[0,T ], one recovers the corresponding holdings via
the one-to-one map

Qt =
∫ t

0

1
λs

dJs +
∫ t

0

1
τsλs

Jsds. (2.4.2)

The myopic representation of the goal functional in impact space is derived in 2.A.1
. Only the volume impact states Jt appear in the reformulation (2.4.1) of the objective
function, but not their derivatives. Hence, this representation of the trader’s expected
P&L naturally extends to general strategies with jumps and/or nontrivial quadratic
variation. For linear price impact models, this extension argument first appears in Ack-
ermann et al. (2021). The self-financing condition for general strategies can in turn
be backed out in a second step, see Corollary 2.A.2. Moreover, switching the control
variable from the trader’s holdings Qt to the corresponding impact state Jt massively
simplifies the trading problem. Indeed, in impact space, the goal functional (2.4.1) can
simply be optimized pointwise, circumventing the need for dynamic programming or
other advanced methods.14

13Here, H(x) =
∫ x

0 h(y)dy is the antiderivative of the price impact function h(x).
14For linear price impact models, this approach has been pioneered by Fruth et al. (2013, 2019).

A related change of variable to integrated impact is used by Gârleanu and Pedersen (2016); Isichenko
(2021).
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Theorem 2.4.2 (Pointwise maximization in impact space). Suppose the integrand
in (2.4.1) is strictly concave in volume impact Jt. Then, pointwise maximization de-
termines the optimal J∗ as h(J∗

T ) = αT and

0 = − µα
t + (τ−1

t + γ′
t)αt − (τ−1

t + γ′
t)h(J∗

t ) (2.4.3)

− τ−1
t h′(J∗

t )J∗
t , for t ∈ [0, T ).

The corresponding optimal holdings can be recovered via (2.4.2).

2.4.1 No Price Manipulation

We now discuss the wellposedness of the pointwise maximization (2.4.1). More specifi-
cally, we link the concavity of the integrand in (2.4.1) to the absence of “price manip-
ulation” (i.e., trades that generate expected profits not from accurate price forecasts
but from turning price impact into gains). For linear price impact, this link was first
established by Fruth et al. (2013), who observed:

“Time-dependent liquidity can potentially lead to price manipulation. In periods of
low liquidity, a trader could buy the asset and push market prices up significantly;
in a subsequent period of higher liquidity, he might be able to unwind this long
position without depressing market prices to their original level, leaving the trader
with a profit after such a round trip trade.”

The same intuition also applies in the present context with concave price impact. Indeed,
if

2τ−1
t + γ′

t > τ−1
t max

x

{
−h′′(x)x

h′(x)

}
. (2.4.4)

then differentiating twice shows that the integrand in (2.4.1) is strictly concave in Jt.
When this sufficient condition is satisfied and the first-order condition (2.4.3) admits
a solution,15 then the latter identifies the unique optimizer of (2.4.1). In particular,
without an alpha signal, the optimizer is Jt = 0. This means that without a predictive
signal about future price changes it is not possible to make positive expected profits by
manipulating the price impact dynamics.

When the impact function h is the identity as in Obizhaeva and Wang (2013), then
the right-hand side of (2.4.4) is zero, and this wellposedness condition reduces to the
no price manipulation condition from Fruth et al. (2013). For general concave impact
functions h, the zero lower bound is replaced by the curvature of the impact function,
measured by the “Arrow-Pratt measure of relative risk aversion” of h. Just as risk aver-
sion in utility theory affects economic behaviors by guiding investment and consumption
decisions based on wealth changes, this curvature informs trading strategy considera-
tions indicating how aggressively the market impact diminishes as trade size increases.

15In particular, such a solution always exists in the empirically relevant case where the price impact
functions behave like a power function xc, c ∈ (0, 1] for large x.
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This lower bound makes it harder to avoid price manipulation. For example, if h follows
a power law ∝ xc, c ∈ (0, 1), then the lower bound in (2.4.4) is 1 − c rather than 0. The
condition’s interpretation remains: liquidity cannot increase faster than price impact
decays: τtγ

′
t > −(1 + c).

Remark 2.4.3 (Necessary condition). If the impact function is a pure power law
(h(x) = xc for x ≥ 0), then Condition (2.4.4) is both necessary and sufficient. Indeed,
if (2.4.4) is not satisfied then an explicit price manipulation strategy can be constructed
just as in the linear case (Muhle-Karbe et al., 2024, Section 4.3).

For general concave impact functions h(x) the global concavity condition (2.4.4) is
only sufficient to rule out price manipulation but not necessary. For example, if the
integrand fails to be strictly concave everywhere, then it may still have a unique global
maximum, unlike for power law functions.

2.4.2 Examples

We now discuss the properties of the optimal policies implied by Theorem 2.4.2.

Corollary 2.4.4. Consider the case where the price impact function is a pure power law
h(x) = xc for x ≥ 0.16 Under the no price manipulation condition (1 + c)τ−1

t + γ′
t > 0,

the optimal impact state then is

I∗
t = τ−1

t + γ′
t

(1 + c)τ−1
t + γ′

t

αt − 1
(1 + c)τ−1

t + γ′
t

µα
t . (2.4.5)

The Baseline Scenario

First assume the general alpha signal to be constant over [0, T ]. For instance, the long-
term trader determines their alpha signal at the start of the day and does not update
the signal intraday. In particular, the long-term trader assumes no intraday alpha decay.
The optimal impact state then equals

I∗
t = α

1 + c
, t ∈ (0, T ); I∗

T = α.

The corresponding smooth trades are

dQ∗
t = α1/c

λτ(1 + c)1/c
dt, t ∈ (0, T ),

and the initial and terminal block trades are

∆Q∗
0 = α1/c

λ(1 + c)1/c
; ∆Q∗

T = ((1 + c)1/c − 1)α1/c

λ(1 + c)1/c
.

16Due to lack of smoothness one cannot apply Theorems 2.4.1 and 2.4.2 in this case. However, one
can first apply these results to a smoothed impact function as in Example 2.2.3 and then send the
mollification to zero.
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Unsurprisingly, the optimal trades are a complex non-linear function of the model
and the alpha because the price impact model is non-linear. In contrast, when expressed
in impact, the optimal trading strategy is a surprisingly concise linear function of alpha.

This pattern repeats itself in the following sections. Every time one adds model fea-
tures, both the optimal trades and the optimal impact increase in complexity. However,
the trades’ complexity increases massively. While numerically implementable, these
trade formulas are challenging to grasp and communicate concisely. In contrast, the
impact formulas increase only mildly in complexity and remain intuitive as one adds
model features.

Adding Alpha Decay

To illustrate this, now assume that αt is an Itô process with drift µα
t . The optimal

impact state then equals

I∗
t = 1

1 + c
(αt − τµα

t ) , t ∈ (0, T ); I∗
T = αT .

Therefore, a trader considering a dynamic alpha signal only needs to correct their strat-
egy in impact space by the alpha’s decay, measured by µα

t , relative to the impact decay
rate. Furthermore, this adjustment remains linear.

Contrast this simple expression for the optimal impact to the corresponding trading
speed over (0, T ). For simplicity, assume α is deterministic, so that µα

t = α′
t. The

optimal trading speed then is

dQ∗
t = (αt − τα′

t)
(1−c)/c

λτ(1 + c)1/c
(αt − τ2α′′

t )dt.

Not only does the formula in trade space depend on higher derivatives of the alpha
signal, the complexity increase also compounds with the non-linear relationship and
leads to an unwieldy trading formula.

Alpha Decay and Dynamic Liquidity

With alpha decay (−µα
t > 0), one must trade more aggressively to exploit the trading

signal before it disappears. We now discuss how this trade-off between alpha level and
decay is modulated by changing liquidity conditions (recall that γt = log λt, where λt is
Kyle’s lambda, a measure of illiquidity):

1. When liquidity changes are small, γ′
t ≪ τ−1

t , the optimal impact state simply adds
the alpha level αt and its decay −τtµ

α
t over the impact’s timescale:

I∗
t = 1

1 + c
(αt − τtµ

α
t ) .

2. When liquidity decreases by a sizable amount, then the alpha level gains in im-
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portance. For instance, if γ′
t = τ−1

t , then

I∗
t = 2

2 + c
αt − 1

2 + c
τtµ

α
t .

3. Conversely, when liquidity increases by a sizable amount, then alpha decay gains
in importance. For instance, if γ′

t = −1
2τ−1

t , then

I∗
t = 1

2 + 2c
αt − 2

1 + 2c
τtµ

α
t .

Remark 2.4.5 (Liquidity droughts and floods). The alpha level and decay trade-off
is agnostic to the level of liquidity: only its changes matter. Therefore, practitioners
should focus on their trade’s alpha level during liquidity droughts and their trade’s alpha
decay during liquidity floods.

Transition from Linear to Square-root Impact

Let us now discuss how the results above adapt to more general price impact functions
such as the crossover from linear to square-root impact in Example 2.2.3. To this
end, the crucial observation is that the optimality condition (2.4.3) is local, in that the
optimal impact state only depends on the corresponding local behavior of the price
impact function. For example, if the impact functions is a concatenation of power laws
(up to smooth interpolation), then the corresponding optimal impact state switches
between the corresponding power law regimes as the alpha signal, its decay, and the
liquidity parameters vary over time.

0 1 2 3 4 5
α̃

0

1

2

3

I
∗

Figure 2.3: The optimal impact I∗
t as a function of the “adjusted alpha” α̃t = αt − τtµ

α
t

for the price impact function h(x) = sgn(x)
√

2|x|x0 − x2
0 from Example 2.2.3 (solid

blue), for the linear model of Obizhaeva and Wang (2013) (dashed orange), and for a
pure square-root model (dotted black).

To illustrate this, consider the price impact function from Example 2.2.3 and suppose
for simplicity that liquidity is constant (γ′

t = 0). Then, the first-order condition (2.4.3)
simplifies to

0 = α − τtµ
α
t − h(J∗

t ) − h′(J∗
t )J∗

t and in turn J∗
t = g(αt − τtµ

α
t ),
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where g is the inverse of h(x) + h′(x)x. For weak “adjusted” alpha signals
0 ≤ αt − τtµ

α
t ≤ x0, the relevant part of the price impact function from Example 2.2.3

then is the linear one, so that the optimal impact is half of the alpha signal. For stronger
adjusted alpha signals αt − τtµ

α
t > x0, the nonlinear part of the impact function applies.

For very large adjusted alpha signals, the latter approaches a square root function so
that the optimal impact state tends to two thirds of the alpha signal. For intermediate
values of the alpha signal, the optimal impact state smoothly interpolates between these
extreme cases, as illustrated in Figure 2.3.

2.4.3 Effects of Risk Aversion?

Models with risk penalties have been studied extensively with linear price impact (cf.,
e.g., Gârleanu and Pedersen (2013, 2016) and various more recent papers). With a
quadratic holding cost, optimization without price impact then is also well-posed; the
solution is myopic and the holding cost just acts as a scaling parameter for the current
alpha signal that allows to set a given average risk level, for example. With transient
linear price impact and a linear mean-reverting signal, the optimal holdings become a
linear feedback function of the current signal and the current impact (for more general
signal dynamics the relationship is more involved). As the holding cost increases, the
same alpha signals are exploited less aggressively and the effect of past impact dimin-
ishes.

With nonlinear price impact, we expect these qualitative properties to remain true.
In particular, the optimal holdings should depend on the same state variables, but
in a nonlinear manner described by a PDE with two space dimensions and unknown
boundary behavior.17

Application to Transaction Cost Analysis (TCA)

To give a non-technical introduction to our optimal trading rules and illustrate the ease
with which these can be implemented in practice, we now discuss a concrete application,
“Transaction Cost Analysis” (TCA).18

The primary purposes of TCA are to establish, ex-post, whether a set of orders
traded optimally and to investigate inconsistent behavior. The European Commission
(2014) defines MiFID II requirements for best execution in Article 27: “Obligation to
execute orders on terms most favourable to the client”:

“[Regulators] require investment firms who execute client orders to monitor
the effectiveness of their order execution arrangements and execution policy
in order to identify and, where appropriate, correct any deficiencies.”

17The case of a constant alpha signal and small price impact that decays instantaneously – for which
there is only one space dimension – has been studied by Guasoni and Weber (2020)

18Another important application, the opportunity costs of misspecified price impact models is dis-
cussed in the companion paper of the present study (Hey, Bouchaud, Mastromatteo, Muhle-Karbe, and
Webster, 2024a), based on a preview of some of the results derived in the present study.
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TCA uncovers incorrect model assumptions, algorithm implementation errors, or poorly
calibrated alpha signals. Moreover, researchers and traders must communicate TCA to
stakeholders, including investors, clients, and regulators:

“[Regulators] require investment firms to be able to demonstrate to their
clients, at their request, that they have executed their orders in accordance
with the investment firm’s execution policy and to demonstrate to the com-
petent authority, at its request, their compliance with this Article.”

Therefore, TCA must streamline communication, conveying core algorithm trade-offs
without getting lost in implementation details, or conversely, obfuscating best execution
requirements.

The optimal trading formula in this paper fulfills these requirements by expressing
the optimal strategy as a balance between impact, alpha, and alpha decay. To illustrate
this, first suppose for simplicity that liquidity is constant over the trading horizon. If

(a) price impact decays over a timescale τ ,

(b) price impact is a power function of order size with exponent c ∈ (0, 1], and

(c) the trader’s alpha signal is αt with alpha decay −α′
t,

then the impact It of the optimal trading strategy satisfies the linear relationship

It = 1
1 + c

(
αt − τα′

t

)
. (2.4.6)

At any given time, an algorithm thus reacts to signals by trading in a direction that
balances these three core variables. For instance, an execution algorithm accelerates
when detecting larger alpha decay. Concavity of the impact function (c < 1) simply
implies that alpha signals can be traded more aggressively than for linear impact. For
example, the optimal impact state with square root impact exhausts two thirds of the
alpha signal, rather than half in the linear case.

We now outline how to use the simple relationship (2.4.6) for TCA; throughout,
we focus on the empirically most relevant case c = 1/2 where the impact function is
consistent with the square-root law.

The Baseline Scenario

First consider a trader executing orders with a constant alpha signal αt = α. For
instance, a long-term trader determines their alpha signal at the start of the day and
does not update the signal intraday. In particular, the long-term trader assumes no
intraday alpha decay, α′

t = 0. In this scenario, the optimal execution strategy satisfies

It = 2
3α. (2.4.7)
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α I
Strategy (bps) (bps)

A (Macro) 60 40
B (Technicals) 45 30

C (News) 60 50

Table 2.1: Mock TCA report for three strategies under the baseline scenario.

Consider Table 2.1 under this baseline scenario providing the average alpha and
impact of three different trading strategies A, B, and C. From an execution perspective,
the trader’s first-order question is:19

Are the strategies correctly balancing alpha and impact?

Given our baseline assumptions, strategy C did not balance correctly its alpha and
impact: it paid too much impact and should have traded more slowly because I > 2

3α.
Of course, traders should take care when translating such inconsistencies into actions.

Indeed, the model quickly and intuitively detects inconsistencies within a trading strat-
egy. However, without further analysis, it is unclear which of the trader’s assumptions
is false:

(a) Did the strategy experience alpha decay during the execution?

(b) Is the price impact model incorrect? For example, did liquidity vary during the
execution?

(c) Is there a code or data error in the execution algorithm’s implementation?

The next sections apply our impact formula to dig deeper into Strategy C.

Adding Alpha Decay

News α −τα′ I
Trigger (bps) (bps) (bps)

Earnings news 90 30 80
Other news 45 0 30

Table 2.2: TCA breakdown of Strategy C across alpha triggers

Given strategy C’s focus on news, a trader may investigate which news event triggers
their trading strategy and if some events experience alpha decay. Table 2.2 explains the
abnormal behavior in Row C of Table 2.1.

19From an alpha research perspective, an earlier question to answer of course is: Are the alpha signals
correctly calibrated? This leads to the distinction between the strategies’ predicted and realized alpha.
We assume in this study that all alphas are correctly calibrated and that predicted and realized alphas
match in expectation.
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Indeed, while most news events in strategy C experience no alpha decay, the earn-
ings news signal decays during the execution. Therefore, the trading strategy behaved
correctly and accelerated into the alpha decay to capture more alpha, raising impact
costs:

It = 2
3
(
αt − τα′

t

)
.

In this scenario, the trader cannot blame the execution strategy for the high im-
pact costs. If they wish to increase strategy C’s profitability (net alpha capture after
transaction costs), the trader must reduce the strategy’s alpha decay, for instance, by
improving or removing the signal triggered by earnings news.

Adding Dynamic Liquidity Conditions

Liquidity α −τα′ I
Condition (bps) (bps) (bps)

Constant liquidity 90 30 80
Dropping liquidity 90 30 84

Rising liquidity 90 30 75

Table 2.3: TCA breakdown of Strategy C on earnings news across liquidity conditions.

A trader that is unhappy with strategy C’s low profitability during earnings events,
10bps on 90bps of alpha, may nevertheless not want to completely turn off the strategy.
Therefore, they may further decompose the strategy’s performance to determine when
it may recover a more comfortable profitability.

Table 2.3 breaks down the earnings news bucket considering whether liquidity was
constant, rising, or dropping. Section 2.4.2 extends the balancing formula (2.4.6) to
consider such dynamic liquidity conditions. The table is consistent with the formula,
quantifying the following trading intuition:

(a) The strategy’s alpha level matters more when liquidity decreases.

(b) The strategy’s alpha decay matters more when liquidity increases.

Therefore, if the trader wishes to improve strategy C’s profitability, one option is to
only respond to earnings news events when forecasting increasing liquidity, where the
profitability rises from 10bps to 15bps on 90bps of alpha.

2.5 Optimal Trading with Multiple Decay Timescales

Empirical studies suggest that impact decay initially follows a power-law and eventually
converges to a permanent level (Brokmann et al., 2015; Bacry et al., 2015; Bucci et al.,
2019a). To approximate such multiscale dynamics, we now consider a more general
version of the model from Section 2.2, where price impact decays at multiple different
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exponential timescales (and each of the corresponding concavities can potentially also
be different).

2.5.1 Mapping to impact space

For simplicity, we focus on a smooth alpha signal (αt)t∈[0,T ]. The price impact of a
smooth trading strategy (Qt)t∈[0,T ] now is the convex combination of N standard AFS
models, with different time scales for impact decay and, potentially, also different con-
cavities:

It =
N∑

n=1
wnhn(Jn

t ). (2.5.1)

Here, the normalized weights satisfy wn ∈ [0, 1] with
∑N

n=1 wn = 1, the impact functions
hn are increasing, odd and concave on [0, ∞) (e.g., power laws), and their arguments
Jn

t are exponential moving averages of current and past trades with different decay
timescales τn > 0:

dJn
t = −τ−1

n Jn
t dt + λdQt, Jn

0 = 0.

As in Section 2.3.2, a risk-neutral trader maximizes alpha capture net of impact:

sup
(Qt)t∈[0,T ]

E
[∫ T

0
(αt − It) dQt

]
.

For simplicity, we focus on a deterministic alpha signal and constant impact parameters
τn, λ. Then there is no external randomness, so we can focus on deterministic trading
strategies without loss of generality. In view of (2.5.1), their expected P&L equals

∫ T

0
(αt − It) dQt =

N∑
n=1

wn

∫ T

0
(αt − hn(Jn

t )) dQt.

For each term in this sum, we now switch to impact space using the change of variable

dQt = λ−1τ−1
n Jn

t dt + λ−1dJn
t . (2.5.2)

Then, just like for a single impact decay timescale in Section 2.4, integration by parts
applied separately for each time scale leads to a weighted sum of pointwise optimization
problems:

sup
J1,...,JN

λ−1
N∑

n=1
wnE

[ ∫ T

0

( (
τ−1

n αt − α′
t

)
Jn

t (2.5.3)

− τ−1
n hn(Jn

t )Jn
t

)
dt

+ αT Jn
T − Hn(Jn

T )
]
.
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20 However, we cannot simply optimize each term separately in (2.5.3). Instead, we also
have to ensure that the volume impacts Jn

t at each different timescale correspond to the
same trades:

λ−1
(
dJ1

t + τ−1
1 J1

t dt
)

= λ−1
(
dJn

t + τ−1
n Jn

t dt
)

(2.5.4)

for n = 2, . . . , N .

2.5.2 Solution

We enforce the linear constraints (2.5.4) using suitable Lagrange multipliers ηn
t ,

n = 2, . . . , N (see Appendix 2.B). For given ηn
t , the impact states Jn

t , n = 1, . . . , N

decouple, and the trading problem can once again be solved by myopic impact formulas
computed via pointwise maximizations. The Lagrange multipliers guaranteeing that the
consistency condition (2.5.4) also holds solve a nonlinear second-order ODE provided
in Appendix 2.B.

Theorem 2.5.1 (Optimal impact states). Given Lagrange multipliers ηn
t , n = 2, . . . , N

the optimal volume impacts are

h1(J1
T ) = αT + 1

w1

N∑
n=2

ηn
T , hn(Jn

T ) = αT − 1
wn

ηn
T , (2.5.5)

for n = 2, . . . , N and, for t ∈ [0, T ):

J1
t = g1

(
αt − τ1α′

t + 1
w1

N∑
n=2

(ηn
t − τ1ηn′

t )
)

, (2.5.6)

Jn
t = gn

(
αt − τnα′

t − 1
wn

(ηn
t − τnηn′

t )
)

, (2.5.7)

for n = 2, . . . , N .21 The trade consistency constraint (2.5.4) is satisfied if ηn
t ,

n = 2, . . . , N solve the system of nonlinear second-order ODEs (2.B.3) with boundary
conditions (2.B.2)-(2.B.4).

2.5.3 Examples

By summing over the terminal volume impacts (2.5.5), we see that the optimal impact
generally fully exhausts the alpha signal at the terminal time (I∗

T = αT ). At intermediate
times t ∈ (0, T ) the representation from Theorem 2.5.1 simplifies considerably when the
price impact function follows the same power law across all decay time scales, which is
supported by our empirical results in Section 2.6:

Example 2.5.2 (Empirically relevant case). The data in Section 2.6 suggests that the
concavities at all impact timescales are similar and close to a square-root law (cn = 0.5).

20Here, Hn(x) =
∫ x

0 hn(y)dy is the antiderivative of the price impact function hn.
21Here, gn(x) is the inverse of h′

n(x)x + hn(x).
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The optimal impact state then becomes

I∗
t = 2

3

(
αt − τwα′

t +
N∑

n=2
(τn − τ1)ηn

t
′
)

, I∗
T = αT , (2.5.8)

where τw =
∑N

n=1 wnτn. Thus, the trading strategy behaves as if it traded under the
weighted timescale τw, plus additional decay terms induced by the Lagrange multipliers.

For the special case of linear price impact (hn(x) = x), the ODEs from Theorem 2.5.1
become linear, leading to explicit solutions that can be applied to arbitrary alpha sig-
nals.22 The simplest case of two impact decay timescales and constant alpha already
illustrates several key effects:

Example 2.5.3 (OW model with two timescales). When price impact is linear
(h1(x) = h2(x) = x), then ηt satisfies a linear second-order ODE. Indeed, setting

τ̄w1 = w1τ1 + w2τ2, τ̄w2 = w2τ1 + w1τ2, τ̄w3 = (τ2 − τ1)w1w2, τ̄ =
√

τ1τ2,

the ODE for the Lagrange multiplier then simplifies to

τ̄2η′′
t − τ̄w1

τ̄w2
ηt = τ̄w3

τ̄w2

(
αt + τ̄2α′′

t

)
,

η′
0 − 1

τ̄w2
η0 = τ̄w3

τ̄w2
α′

0, η′
T + 1

τ̄w2
ηT = τ̄w3

τ̄w2
α′

T .

For constant α, this equation has the explicit solution

η(t) = α

(
C+eCt + C−e−Ct − τ̄w3

τ̄w1

)
,

where

C =
√

τ̄w1

τ̄2τ̄w2
, C+ = τ̄ τ̄w3

τ̄w1 (τ̄(eCT + 1) +
√

τ̄w1 τ̄w2(eCT − 1)) , C− = C+eCT .

When the trading horizon is long (T → ∞), C+ → 0 and C− → τ̄ τ̄w3
τ̄w1 (τ̄+

√
τ̄w2 τ̄w3 ) > 0.

The optimal impact (2.5.8) in turn tends to

I∗
t = α

2 (1 − (τ2 − τ1)C−Ce−Ct).

Over time, this converges to the same stationary level α/2 obtained in models with a
single decay timescale. However, instead of moving the impact to this level using a single
block trade at time t = 0, the optimal policy with multiple decay timescales consists of a
smaller initial jump complemented by a subsequent smooth adjustment. Put differently,
for multiple decay timescales the optimal impact for a single time scale is smoothed out

22Optimization problems with linear impact and general decay kernels are studied using other methods
by Gatheral et al. (2012); Abi Jaber and Neuman (2022).
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to a certain extent. This “transient” build-up of the optimal impact state is required to
satisfy the trade consistency conditions (2.5.4), which depend both on the current levels
and the histories of the different volume impact Jn

t and hence would not be satisfied if
the overall impact state would immediately be moved to its stationary level by an initial
block trade like for a single impact decay timescale.

With a finite trading horizon T < ∞, a similar smoothing is applied near the terminal
time. This is illustrated in Figure 2.4 for different impact decay timescales and trade
durations T . One takeaway from Figure 2.4 is that two regimes can occur depending
on T :

1. If T is closer to the long timescale τ2, then the solution behaves like a smoothened
version of the optimal strategy on timescale τ2. The smoothing comes from the
temporary buildup of the much faster decaying impact on timescale τ1, and is
reminiscent of optimal impact profiles with instantaneous impact costs.

2. If T is closer to the short timescale τ1, then the solution behaves like the optimal
strategy on the timescale τ1 with a linear offset to the impact. The latter stems
from the linear impact build-up of the (nearly) permanent second timescale τ2.

0 T/2 T
t

0.00

0.25

0.50

0.75

1.00

I
∗ t/
α

T1 T2 T3

t

I
∗ t/
α

Figure 2.4: Optimal impact I∗
t over time for linear impact h(x) = x and two decay

timescales with weights w1 = 2/3, w2 = 1/3. In the left panel the order duration is
T = 70d and the impact timescales (in days) are (τ1, τ2) = (1,10) (gray dashed), (1,100)
(orange dotted), and (0.5,65) (solid blue) in line with our empirical estimates. In the
right panel T is varied from T3 = 50d to T2 = 30d and T1 = 10d, for (τ1, τ2) = (0.5,65).

If the price impact is a concave function such as h(x) =
√

x, then the ODE from
Theorem 2.5.1 needs to be solved numerically, but this can be easily implemented in
any standard solver. Figure 2.5 compares the optimal impact of the concave and linear
models. We see that the initial and terminal jumps of the optimal impact state are also
partially absorbed into smooth trades for square-root impact across multiple timescales.
However, the optimal impact profile becomes much more asymmetric, in that the initial
block trade is reduced to a much larger extent than its counterpart at the end of the
trading interval. Moreover, whereas the average impact is the same for linear models
with one or two timescales, the presence of a second timescale considerably reduces the
average impact with concave price impact.
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Figure 2.5: Optimal impact I∗
t over time for linear impact h(x) = x (solid blue) and

square-root impact h(x) =
√

x (dotted orange), and the optimal impacts It = α/(1 + c)
for a single decay timescale when c = 1 and c = 0.5 (solid gray).

2.6 Empirical Results

We now turn to the empirical estimation of the models studied in the previous sections.
We seek to answer questions such as “What timescales does price impact decay over?”
or “Do all timescales share the same concavity parameter?” Given the difficulty of
accessing sufficiently large metaorder datasets for academic researchers or small trading
firms, we also quantify to what extent price impact models fit on proprietary data can
be recovered using the public trading tape alone.

2.6.1 Dataset

Researchers calibrate price impact models on various datasets to analyze transaction
costs at the order or portfolio level. Data may include proprietary orders at large
financial institutions (Almgren et al., 2005; Bershova and Rakhlin, 2013; Tóth et al.,
2017; Frazzini et al., 2018), and public trades on the market tape (Bouchaud et al.,
2004; Cont et al., 2013; Chen et al., 2019; Muhle-Karbe et al., 2024). In this paper,
we use a proprietary dataset of meatorders provided by CFM that comprises roughly
105 metaorders of future contracts traded over 2012-2022. The future contracts include
commodities, resources and indices. The time at the start and the end of each metaorder
is indicated, as well as the mid-price and the number of child orders. All metaorders
were executed through at least three child orders and accounted for a fraction between
0.01% and 10% of the average daily volume; the average order size was of the order of
0.1%. No metaorder was traded longer than one day and the average execution time is
3h. In line with Almgren et al. (2005), we normalize trade sizes Qt by the average daily
traded volume of the respective contracts. This normalization facilitates comparison
across assets with very different liquidity profiles and ensures that the estimated impact
kernels are dimensionless and interpretable.
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2.6.2 Fitting Methodology

Price returns are fitted against the increments of a power-law price impact of the form

It = σ
N∑

n=1
wnsgn(Jn

t )|Jn
t |cn , (2.6.1)

for concavities cn, (unnormalized) weights wn, and volume impacts Jn
t with decay

timescales τn.23 In line with Almgren et al. (2005), we normalize the coefficient for
each timescale n using the daily price volatility σ; recall the trade sizes have already
been normalized by daily trading volumes.24 In the following, we consider a grid of
impact decays τn and concavity parameters cn and denote the best point estimates by
τ̂n and ĉn respectively.

Since i) no metaorder in the sample lasts more than one trading day, and ii) each of
them is executed with a profile close to a TWAP, the volume impacts Jn

t are computed
under the assumption that trades are executed uniformly during the execution time of
each metaorder, and there is no need to consider overnight effects.

To implement the fitting, for each value of the concavity cn and impact timescales
τn on the parameter grid, we then compute the respective volume impacts state hn(Jn

t ),
and in turn fit their coefficients wn by a linear regression. The optimal values of the
concavity and decay parameters are in turn determined by optimizing over the grid.25

Together with our results from the previous sections, this allows researchers to fit
non-linear, multi-timescale models while retaining inherently tractable solutions to sta-
tistical arbitrage problems with general nonparametric alpha and liquidity signals. Fur-
thermore, this grid search provides a sensitivity analysis across different parameter values
as a byproduct.

2.6.3 Summary of Results

Table 2.4 summarizes our parameter estimate across various model specifications. The
following sections then delve deeper into different aspects of this analysis.

The main takeaways of our analysis of the “term structure of metaorder impact” are:

(a) Two timescales fit the data well. In order of economic importance, these are a
fast timescale measured in hours and a very slow timescale measured in weeks
(resembling permanent impact).

(b) Concavity is uniform across all of these timescales, in line with the square-root
law.

23For simplicity, we focus on constant liquidity parameters. See Cont et al. (2013); Min et al. (2022);
Muhle-Karbe et al. (2024) for empirical studies with dynamic liquidity parameters using the public
trading tape.

24For power impact functions, the push factor λn of each volume impact JN
t can be absorbed into the

unnormalized weights, so we set λn = 1 without loss of generality.
25A nonparametric approach for estimating general decay kernels for linear price impact is proposed

and studied by Neuman et al. (2023).
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When the aggregate order flow imbalance is used to create “proxy metaorders” from the
public trading tape (see Section 2.6.6 for more details), then the main takeaways are:

(a) When restricted to models with one timescale, public and proprietary data re-
trieve the same concavities and similar decay parameters. However, the public
trading tape substantially underestimates the magnitude of price impact. Taken
at face value, this model misspecification can in fact turn the P&L of an otherwise
profitable strategy negative, see Hey et al. (2024a).

(b) When fitting multiple timescales, both the impact parameters and the correspond-
ing decay timescales estimated from the public trading data do not match their
counterparts derived from metaorder data. The public trading tape still underes-
timates the magnitude of price impact in this case.

(a) One timescale τ

Dataset c τ in days w

Metaorders only 0.5 0.5 1.7
Public market tape 0.5 0.3 1.1

(b) Multiple Timescales τ⃗ , single concavity c = 0.5
Dataset τ⃗ w⃗/||w⃗|| ||w⃗||

Metaorders only 0.5, 65, 7 0.6, 0.3, 0.1 2
Public market tape 0.3, 2, 14 0.55, 0.25, 0.2 1.3

(c) Two timescales τ⃗ and concavities c⃗

Dataset c⃗ τ⃗ w⃗/||w⃗|| ||w⃗||
Metaorders only 0.45, 0.5 0.5, 65 0.6, 0.4 1.75

Public market tape 0.65, 0.35 2, 0.3 0.75, 0.25 1.3

Table 2.4: Price impact parameter estimates across datasets and models. The elements
of the vectors τ⃗ = (τ1, ..., τN ) and c⃗ = (c1, c2, ..., cN ) are sorted by descending weight wn

in w⃗ = (w1, ..., wN ).

2.6.4 Understanding Multiple Timescales

We now look into the fitting of multiple impact decay timescales in more detail.

Two timescales:

To show that impact decays on multiple timescales, we start by fitting two decay
timescales τ1, τ2 while keeping the same concavity parameter c1 = c2 = 0.5 fixed.
Figure 2.6a displays a symmetric heatmap of the statistical sensitivity to (τ1, τ2). The
R2 peaks at τ̂1 = 0.5 days, matching the one-dimensional decay fit in Hey et al. (2024a).

Figure 2.6d fixes τ1 = τ̂1 and displays R2(ĉ, τ̂1, τ2). Three peaks appear at 7, 14 and
65 days, allowing to significantly increase the fraction of explained variance: despite
the modest absolute change (from 2.65% of price variance up to 2.75%), the change is
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significant. For our sample size and the average volume fraction attributed to CFM
trades, the R2(ĉ, τ̂1, τ2) can be reliably estimated up to 5 · 10−5 – variations exceeding
this level are considered statistically significant, indicating a meaningful improvement in
model performance. The largest improvement obtains for the longest timescale τ̂2 = 65
days, with associated weight w2/||w⃗|| = 0.3. (As for principal component analysis, we
henceforth sort the timescales by descending weights wn/||w⃗||.)

This slow impact decay effectively corresponds to permanent price impact. Using the
ANcerno database, Bucci et al. (2019a) show that permanent impact is about 1/3 of peak
impact. Our study matches this since w1(ĉ, τ̂1 = 0.5, τ̂2 = 65)/||w⃗|| = 0.7, cf. Figure 2.6c
and the inset of Figure 2.6d. Following the framework discussed by Bacry et al. (2015),
this permanent component of impact can be interpreted as the alpha traded, assuming
the impact itself is purely mechanical and reverting over time.

Three timescales:

When the first two timescales are fixed, one fits the third timescale by scanning across
candidate τ3. Figure 2.7 displays this procedure. R2(ĉ, τ̂1, τ̂2, τ3) peaks at
τ3 = τ̂3 = 7 days, in line with the intermediate peak displayed in Figure 2.6d. The inset
of Figure 2.7 plots the estimated weights w3 for different τ3. For the optimal value
τ̂3 = 7 days, τ̂1, τ̂2 contribute about 60% and 30% to the total impact. In contrast,
τ̂3 only contributes 10%. The improvement of R2 also is only 5 · 10−5, i.e., similar to
the noise level. Given the third timescale’s low statistical improvement on our data, we
henceforth focus on two timescales.

2.6.5 Understanding Multiple Concavities

We now lift the assumption that ĉ1 = ĉ2 = 0.5 and explore arbitrary combinations of
concavity parameters (c1, c2). The essential takeaway is that varying concavity over
timescales does not significantly improve the model for metaorder data.

More specifically, we now fix the two timescales τ̂1, τ̂2 with the largest weights ob-
tained above, but vary the corresponding concavities c1, c2. Figure 2.8 displays the
statistical fit for different concavity parameters in the left panel. The heatmap is asym-
metric:

(a) For the longer timescale, ĉ2 = 0.5 regardless of the choice for c1.

(b) For the shorter timescale, ĉ1 < 0.5. For example, for ĉ2 = 0.5 we obtain ĉ1 = 0.45,
cf. Subfigure 2.8b.

However, compared to the previous case where one chooses the same concavity parameter
for both decays, the statistical significance R2 increases only slightly by 5 · 10−5 from
2.752% to 2.759%, comparable to the standard error 5 · 10−5 of the R2. Therefore,
multiple concavities only lead to relatively minor improvements in the model fit.
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(ĉ, τ1, τ2).

10−1 100 101 102

τ2

1.75

1.80

1.85

1.90

1.95

2.00

||~w
||(
ĉ,
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Figure 2.6: Calibration results for two decay timescales τ1 and τ2 with fixed concavity
parameter ĉ = 0.5. Panel (a) shows the statistical fit; Panel (b) depicts the model’s
prefactor across τ1, τ2. Panel (c) displays the normalized weight of the faster timescale.
Panel (d) shows the model fit across τ2 when the first timescale is fixed to τ̂1 = 0.5
days (green), as well as the corresponding overall prefactor ||w⃗||(c, τ1, τ̂2) (blue) and the
normalized weight w2/||w⃗|| of the second timescale (inset).
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Figure 2.7: Calibration results for third decay timescale τ3, when the concavity ĉ = 0.5
and the first two decay timescales τ̂1 = 0.5 days and τ̂2 = 65 days are fixed. The main
plot shows the statistical fit. The inset panel displays the normalized weights of the
third timescale.

2.6.6 Understanding the Public Trading Tape

Metaorders are proprietary data and are not typically available to academic researchers.
Trading firms (especially small ones) may also wish to compare their proprietary trades
with the market. Therefore, we now assess to what extent similar results as in the
previous section can also be derived from the public trading tape alone.

Many trades on the public tape belong to metaorders and, thus, are expected to have
the same price impact. However, the challenge is that the public tape lacks additional
metaorder information such as start and end times or even average durations.

To gain a better understanding of how the impact of the aggregate public orderflow
compares to metaorders, the aggregate impact IT can be computed over a bin of length
T conditional on the orderflow imbalance

∑NT
t=1 ∆Qt where ∆Qt is the traded quantity

(normalized by average daily volume) of the tth trade out of NT total trades in the
respective bin. Webster (2023) calls this approach “imbalance as an order size proxy”.
The intuition is that sizable orderflow imbalances can serve as a proxy for metaorders
when these are not directly available. The proxy metaorders cover the same assets as
the proprietary metaorder. We construct them to last for 3h each to match the average
proprietary metaorder length. We also experimented with 30s metaorders, but find that
this leads to quite different results.

Figure 2.9 collects calibration results for the public trading tape that contains the
same universe of future contracts as the proprietary dataset. The essential takeaway is
that, when fitting a single timescale using comparable metaorder durations, the public
trading tape recovers the same concavity and a similar decay timescale as the proprietary
dataset. The public trading tape substantially underestimates the magnitude of price
impact, which is problematic for implementing trading strategies. Nevertheless, for
academic research, these results suggest that proxy metaorders allow one to obtain
parameter estimates of a reasonable magnitude.
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Figure 2.8: Calibration results in the multi-concavity case for metaorders where τ̂1 = 0.5
days and τ̂2 = 65 days. Panel (a) shows the statistical sensitivity in terms of c1 and c2;
Panel (b) shows the values for the model’s prefactor and the statistical sensitivity for
ĉ2 = 0.5. ĉ1 shifts to the left, as ĉ1 = 0.45, and the weight w1 = 0.6.

This is no longer the case when fitting multiple timescales and concavities:

(a) The public trading tape struggles to capture long-term decay. Therefore, the
additional metaorder information crucially matters when discussing permanent
(or slowly decaying) price impact.

(b) For the public trading tape, different timescales seem to have different concavities.
In particular, the square-root law does not hold universally, but shorter timescales
appear more linear and longer timescales more concave, unlike for metaorder data.

Indeed, for a single concavity but with two decay timescales, we fix ĉ = 0.5. Fig-
ure 2.9a displays the statistical fit. The peak occurs at τ̂1 = 0.3 days and τ̂2 = 2 days
(with corresponding normalized weights w1/||w|| = 0.55 and w2/||w|| = 0.45). The next
timescale is τ̂3 = 14 days. The three timescales then contribute 55%, 25%, and 20% to
the total price impact, a more balanced account than for the metaorder data.

Figure 2.10 explores a model with two timescales and concavities. The two timescales
are fixed to τ̂1 = 2 and τ̂2 = 0.3 days matching the descending order of weights
w1/||w|| = 0.75 and w2/||w|| = 0.25; the corresponding concavities are in turn esti-

mated as ĉ1 = 0.65 and ĉ2 = 0.35. The asymmetric graph indicates a strong dependence
between the concavity, weights, and timescale parameters. The longer timescale con-
tributes 75% to the total price impact on the public tape.

2.6.7 Conclusion

In summary, our empirical study based on metaorders suggests that a model with square-
root impact across two timescales presents a good compromise between parsimony and
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Figure 2.9: Timescale calibration results for the public trading tape. Panel (a) shows
the statistical fit across impact timescales τ1, τ2. Panel (b) fixes the point estimate
τ̂1 = 0.3 days for the first timescale and displays the statistical fit, weights, and overall
level for different values of the second time scale τ2. Panel (c) fixes the point estimates
τ̂1 and τ̂2 = 2 days for the first two timescales and plots the statistical fit, weights and
overall prefactor for different values of the third time scale τ3. The price impact function
is fixed to a square-root law throughout (ĉ = 0.5).
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(c1, ĉ2, τ̂1, τ̂2).

Figure 2.10: Concavity calibration results for the public trading tape. Panel (a) displays
the statistical fit across different values of the concavities c1 and c2. Panel (b) fixes the
point estimate ĉ2 = 0.35 for the concavity of the timescale τ̂2 = 0.3d with the smaller
weight ŵ2/||w⃗|| = 0.35 and plots the fit together with the overall prefactor against the
concavity c1 of the first decay timescale. The impact decay timescales are fixed to τ̂1 = 2
days and τ̂2 = 0.3 days throughout.

accuracy. In order of importance, the decay timescales are of the orders of hours and
weeks.

For models with a single timescale, the public trading tape recovers the correct
concavity and a reasonable estimate of the fast impact decay but underestimates the
magnitude of the price impact. The longer-term impacts are difficult to extract from
public data, and the public data also points towards deviations from the square-root law
that cannot be found in the metaorder data. This clarifies the scope and the limitations
of using publicly available trading data as a proxy for proprietary metaorders.

2.7 Code and Data Disclosure

The code and data to support the numerical experiments in this paper can be found at
https://github.com/nataschahey/concavepriceimpactanddecay.
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Appendix

2.A Proofs to Theorem 2.4.1

We first establish the myopic representation of the goal functional in impact space
from Theorem 2.4.1. Recall that we are still focusing on smooth trading strategies
Qt =

∫ t
0 Q̇sds at this stage.

2.A.1 Myopic Representation of the Goal Functional

Proof of Theorem 2.4.1. With the one-to-one change of variables
dQ = τ−1

t e−γtJtdt + e−γtdJt, the goal functional to be maximized in (2.3.2) can be
rewritten as

E
[∫ T

0
(αt − h(Jt))τ−1

t e−γtJtdt

]
+ E

[∫ T

0
(αt − h(Jt))e−γtdJt

]
. (2.A.1)

The first term is already in a form that can be maximized pointwise in Jt. We now
recast the second term in such a form, too. To this end, notice that Itô’s formula gives

e−γT αT JT = −
∫ T

0
e−γtγ′

tαtJtdt +
∫ T

0
e−γtαtdJt +

∫ T

0
e−γtJtdαt

(because J0 = 0 and Qt as well as Jt and γt are smooth). Moreover, Itô’s formula,
J0 = 0 and the smoothness of Jt yield

e−γT H(JT ) =
∫ T

0
e−γtγ′

tH(Jt)dt +
∫ T

0
e−γth(Jt)dJt.

By substituting these two identities, the second term in (2.A.1) can be rewritten as

E
[
−
∫ T

0
e−γtJtdαt +

∫ T

0
γ′

tαtJtdt −
∫ T

0
e−γtγ′

tH(Jt)dt + e−γT αT JT − e−γT H(JT )
]

= E
[∫ T

0
e−γt

(
−Jtµ

α
t + γ′

tαtJt − γ′
tH(Jt)

)
dt + αT JT − H(JT )

]
.

Together with the first term in (2.A.1), this yields the asserted myopic representa-
tion (2.4.1) of the goal functional in impact space.

The next step is the observation of Ackermann et al. (2021) that, in impact space,
the goal functional can be readily extended continuously to the impacts generated by
general, not necessarily smooth strategies.
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2.A.2 Continuity of the Goal Functional

Proposition 2.A.1 (Continuity of the objective function in impact space). The func-
tional in impact space∫ t

0
e−γs

(
(τ−1

s + γ′
s)(St − Ss)Js − τ−1

s h(Js)Js − γ′
sH(Js)

)
ds

+
∫ t

0
e−γsJsdSs − e−γtH(Jt).

is continuous in the volume impact (Jt)t∈[0,T ] generated by general semimartingale strate-
gies with respect to the Hilbert norm

||J ||2 = E
[∫ T

0
e−γtJ2

t dt + e−γT J2
T

]
.

Having constructed the goal functional for general non smooth trading strategies in
impact space by continuous extension, one can back out the corresponding self-financing
condition in a second step. Unlike for smooth strategies, bulk trades or holdings with
nontrivial quadratic variation are no longer settled at the impact before the trade.
Instead, additional Itô and jump correction terms appear.

Corollary 2.A.2 (Continuous extension of the self-financing equation). For general
semimartingale trading strategies (Qt)t∈[0,T ] with volume impact (Jt)t∈[0,T ], the goal func-
tional (2.4.1) in impact space corresponds to the self-financing equation

Yt + QtSt =
∫ t

0
Qs−dSs −

∫ t

0
h(Js−)dQs −

∫ t

0

λs

2 h′(Js−)d[Qc]s

−
∑
s≤t

(
1

λs
H(Js) − 1

λs
H(Js−) − h(Js−)∆Qs

)
.

Here, the first term corresponds to the usual gains and losses due to exogenous
price changes. The second term takes into account that all (even smooth) trades incur
the price impact already in place when they are executed. The third term is an Itô
correction for diffusive trades.26 The last term takes into account the extra impact of
bulk trades.27

26This corresponds to execution at the average between the prices St +h(Jt−) before and St +h(Jt− +
λtdQt) ≈ St + h(Jt−) + h′(Jt−)λtdQt after the trade. Locally, this is analogous to the accounting in
the linear model of Obizhaeva and Wang (2013), but with a smaller extra price impact when price
dislocations are already large.

27The third component of this term cancels the jumps of the stochastic integral
∫

h(Js−)dQs. The
extra impact cost of a bulk trade ∆Qt thus is the average 1

λt

∫ Jt

Jt−
h(x)dx along the price impact function.

One can show that this coincides with the costs for such jump trades in the limit-order book model
of Alfonsi et al. (2010).
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2.B Proof of Theorem 2.5.1

Proof of Theorem 2.5.1. The trade consistency constraints (2.5.4) correspond to the La-
grange penalties

λ−1
∫ T

0
ηn

t

(
dJ1

t + τ−1
1 J1

t dt − dJn
t − τ−1

n Jn
t dt

)
,

where ηn
t , n = 2, . . . , N are Lagrange multipliers to be determined. Assuming the

Lagrange multipliers ηn
t are smooth and, in particular, do not jump at the initial or

terminal time,28 we can rewrite the Lagrange penalties using another integration by
parts as

λ−1ηn
T (J1

T − Jn
T ) + λ−1

∫ T

0

(
(Jn

t − J1
t )η′

t + (τ−1
1 J1

t − τ−1
n Jn

t )ηt

)
dt. (2.B.1)

Maximizing the goal functional in its Lagrangian form over J1
T , . . . , JN

T directly yields (2.5.5).
Maximizing over J1

t , . . . , JN
t for t ∈ [0, T ) gives

h′
1(J1

t )J1
t + h1(J1

t ) = αt − τ1α′
t + 1

w1

N∑
n=2

(ηn
t − τ1ηn′

t ),

h′
n(Jn

t )Jn
t + hn(Jn

t ) = αt − τnα′
t − 1

wn
(ηn

t − τnηn′
t ), n = 2, . . . , N.

This in turn leads to (2.5.6) as well as (2.5.7).
We now turn to the characterization of the Lagrange multipliers that guarantee that

the trade consistency constraints (2.5.4) hold. To ease notation, set

g1
t = g1

(
αt − τ1α′

t + 1
w1

N∑
m=2

(
ηm

t − τ1ηm
t

′)) ;

gn
t = gn

(
αt − τnα′

t − 1
wn

(
ηn

t − τnηn
t

′))

for n = 2, . . . , N and similarly for the derivative and inverse functions gn
t

′, (gn
t )−1, e.g.,

g1
t

′ = g′
1

(
αt − τ1α′

t + 1
w1

N∑
m=2

(
ηm

t − τ1ηm
t

′)) .

By (2.5.2), the jumps ∆Jn
T of all volume impacts must match the optimal strategy’s final

bulk trade. To achieve this, the Lagrange multiplier have to be chosen to satisfy the
terminal conditions (here, we have used that αt is smooth and the ηn

t are also smooth
by assumption):

h−1
1

(
αT + 1

w1

N∑
m=2

ηm
T

)
− g1

T = h−1
n

(
αT − 1

wn
ηn

T

)
− gn

T . (2.B.2)

28This is a conjecture a priori as the optimal strategy jumps at these times, but turns out to be
correct.
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For intermediate times t ∈ (0, T ), the Lagrange multiplier needs to ensure that

τ−1
1 J1

t dt + dJ1
t = dQt = τ−1

n Jn
t dt + dJn

t , n = 2, . . . , N.

Equivalently:
τ−1

1 J1
t + J̇1

t = τ−1
n Jn

t + J̇n
t .

After plugging in (2.5.6) and (2.5.7) and their derivatives, we see that this is tantamount
to

g1
t

τ1
+
(

α′
t − τ1α′′

t + 1
w1

N∑
m=2

(ηm
t

′ − τ1ηm
t

′′)
)

g1
t

′

= gn
t

τn
+
(

α′
t − τnα′′

t − 1
wn

(ηn
t

′ − τnηn
t

′′)
)

gn
t

′.

After rearranging, this leads to the N − 1 coupled nonlinear second-order ODEs:

τn

wn
gn

t
′ηn

t
′′ + τ1

w1
g1

t
′

N∑
m=2

ηm
t

′′ − 1
wn

gn
t

′ηn
t

′ − 1
w1

g1
t

′
N∑

m=2
ηm

t
′

= τ−1
1 g1

t − τ−1
n gn

t +
(
g1

t
′ − gn

t
′
)

α′
t −

(
τ1g1

t
′ − τngn

t
′
)

α′′
t , for t ∈ (0, T ).

(2.B.3)

The initial condition for this equation is now pinned down by the consistency re-
quirement that the initial jumps ∆Jn

0 = Jn
0 all have to match the initial bulk trade of

the optimal strategy. In view of (2.5.6) and (2.5.7), this requires the initial conditions

g1
0 = gn

0 . (2.B.4)
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Chapter 3

Misspecification of Price Impact

Summary

Portfolio managers’ orders trade off return and trading cost predictions. Return
predictions rely on alpha models, whereas price impact models quantify trading
costs. This paper studies what happens when trades are based on an incorrect
price impact model, so that the strategy either over- or under-trades its alpha
signal. We derive tractable formulas for these misspecification costs and illus-
trate them on proprietary trading data. The misspecification costs are naturally
asymmetric: underestimating impact concavity or impact decay shrinks profits,
but overestimating concavity or impact decay can even turn profits into losses.

Based on Hey et al. (2024a): N. Hey, J.-P. Bouchaud, I. Mastromatteo, J.
Muhle-Karbe, and K. Webster. The Cost of Misspecifying Price Impact. Risk,
January 2024.

3.1 Introduction

Price impact refers to price movements induced by trading flows, independently of their
information content. For large investors, such adverse price moves caused by their own
trades are the main source of transaction costs.1 Price impact models are thus essential
tools in algorithmic trading, allowing investment teams to estimate the effect of their
trades on asset prices and thereby design, size and deploy systematic strategies. For
instance, (capacity constrained) statistical arbitrage strategies seek to achieve the best
trade-off between price predictions and trading costs.2

The price forecast is commonly called an alpha signal. Turning the latter into optimal
1In this regime, other sources of costs such as proportional bid-ask spreads are of secondary concern

and hence will be disregarded in the following; the interested reader is referred to Martin and Schöneborn
(2011) for a detailed discussion of the role of such linear costs for the design of trading strategies that
operate on a smaller scale.

2If impact costs do no constrain the size of the portfolio tightly enough, it may also be risk constrained,
cf., e.g., Gârleanu and Pedersen (2013) and the references therein.
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trades in turn requires an appropriate price impact model. Many empirical studies find
a concave nonlinear relationship between order size and the price impact of sizeable
trades, see, e.g., Bouchaud, Bonart, Donier, and Gould (2018); Webster (2023) and the
references therein for an overview. More specifically, two essential parameters emerge
when determining the evolution of price impact: concavity and impact decay.

Concavity describes how the marginal build-up of price impact slows beyond a cer-
tain order size: larger orders are cheaper than a linear model suggests. Impact decay
describes how long trade-induced price moves linger in the market and affects how
quickly portfolios can turn over.

This paper quantifies how incorrect calibration of these price impact parameters leads
to significant misspecification costs for traders and portfolio managers. This allows to go
beyond purely statistical parameter estimates by establishing P&L-driven error bounds
for price impact parameters, which are crucial to any team estimating the actual trading
capacity of their alpha signals.

We carry out this analysis using closed-form expressions for misspecification costs
in a nonlinear but nevertheless tractable price impact model introduced by Alfonsi,
Fruth, and Schied (2010). This model was originally proposed and studied for optimal
execution problems, but in fact admits explicit formulas for optimal trades with general
alpha signals, derived in the companion paper of the present study (Hey et al., 2025).

These formulas allow one to quantify how wrong model parameters can be before
turning a profitable trading strategy for a given alpha signal into an unprofitable one.
For example, linear price impact models as in Obizhaeva and Wang (2013) inflate the
transaction costs of large trades and thereby imply overly conservative trading strate-
gies. However, they rarely turn a winning strategy into a losing one. Conversely, even
relatively small overestimates of impact concavity can lead to overly aggressive trading
that leads to losses despite an accurate alpha signal. Similarly, underestimating impact
decay leads to conservative strategies that trade slower than optimal, which sacrifices
some trading opportunities but does not lead to dramatic losses. In contrast, overly
aggressive trades based on overestimates of impact decay can quickly turn a strategy’s
P&L negative.

These fundamental asymmetries are illustrated in Figure 3.1, which contrasts the
symmetric shape of the statistical model fit with the highly asymmetric nature of the
corresponding P&Ls. Such asymmetric behavior underscores that statistical accuracy
alone is not a sufficient benchmark for execution model performance. What ultimately
matters to the trader is not just how well the model fits the data, but how sensitive
trading outcomes are to any deviations from it.

The remainder of this chapter is organized in three parts:

• Optimal Trading Strategy: Section 3.2 derives closed-form formulas for trading
general alpha signals with non-linear price impact.

• Empirical Estimation: Section 3.3 estimates the impact decay and concavity pa-
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Figure 3.1: Left panel: Symmetric statistical significance ratio R2(c)/R2(ĉ) for point
estimate ĉ = 0.5 plotted against misspecified impact concavity c. Right panel: Asym-
metric profit ratio U(c)/U(c∗) for ground truth c∗ = 0.5 plotted against misspecified
impact concavity c. The dark and light shaded areas are bootstrap confidence intervals.

rameters of the non-linear price impact model using proprietary trading data.

• Sensitivity Analysis: Section 3.4 combines the results from the previous two sec-
tions. Using the explicit trading strategies from Section 3.2, we evaluate the P&L
implications of the parameter estimates from Section 3.3.

Both optimal trading and parameter estimation in models with nonlinear price impact
were studied in greater detail in the last Chapter 2 to which we also refer for the
derivations of the results presented here.

3.2 Optimal Trading Strategy

This section takes a price impact model as given and derives the trading strategy that
maximizes an alpha signal’s value net of price impact costs. We write Qt for a strategy’s
position at time t. Therefore, dQt represents the trade at time t. An Itô process
(St)t∈[0,T ] describes the “unperturbed” midprice in the absence of trading. The observed
midprice at time t is

Pt = St + It(Q),

where It(Q) is the price impact caused by the trades (Qs)s≤t up to time t.

3.2.1 The AFS model

We focus on the price impact model introduced by Alfonsi et al. (2010) (henceforth
AFS) and studied further by Gatheral et al. (2012), which captures the nonlinear and
transient nature of price impact, but nevertheless remains remarkably tractable.

In the AFS model, price impact is a nonlinear function of a moving average of current
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and past order flow:3

It = λ sign(Jt)|Jt|c, (3.2.1)

where Jt is the exponentially weighted moving average

dJt = −1
τ

Jtdt + dQt, J0 = 0. (3.2.2)

Here, λ > 04 describes the magnitude of price impact, c ∈ (0, 1] measures its concavity,
and τ > 0 describes the timescale over which impact decays.5

For c = 1, price impact is linear and one recovers the model of Obizhaeva and Wang
(2013). c = 0.5 corresponds to the “square-root law” practitioners commonly use in
Transaction Cost Analysis.

3.2.2 The optimization problem

Given a model for the unperturbed price St, a trading strategy Qt and an impact model
It(Q), a (smooth) strategy’s P&L Yt has the dynamics6

dYt = QtdSt − ItdQt.

For many statistical arbitrage strategies, price impact rather than risk is the main
capacity constraint. In this regime, one maximizes the expected P&L, given future
return predictions. Such predictions take the form of an alpha signal:

αt = Et [ST ′ − St]

for some time T ′ > T , where T is the execution horizon usually smaller than one day
and St is the unaffected price. In addition to the level αt of the current alpha prediction,
another crucial statistic in this context is its decay, captured by its drift rate µα

t . (For
smooth alphas, this is simply the derivative.)

3This paper presents results for price impact functions of power form; these are special cases of
the results for AFS models with general impact functions derived in the companion paper (Hey et al.,
2025). The analysis there also incorporates time-dependent and even stochastic liquidity, but still leads
to explicit formulas. Another important generalization are additional linear trading costs corresponding
to bid-ask spreads, for example. These only have a second-order effect for large investors (for which the
superlinear price impact costs are the main concern). For more risk-constrained investors or large-spread
instruments, the joint analysis of price impact and spread costs requires finer tools.

4Note that in the companion paper (Hey et al., 2025), the push-factor is integrated within the
differential equation, forming part of the concave function. In the current framework, to align with the
previous definition, the concave function would need to be applied to λ.

5This specification implies that impact It relaxes all the way to zero over long time horizons, i.e.,
trades have no permanent impact. But see Gabaix and Koijen (2021); Bouchaud (2022) for a detailed
discussion of this point.

6Diffusive or bulk trades lead to extra correction terms (Hey et al., 2025), but their detailed treatment
can be avoided by recasting the optimization in impact space (3.2.4).
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For a given alpha signal, a risk-neutral statistical arbitrage strategy maximizes

E [YT ] = E
[∫ T

0
(αt − It)dQt

]
. (3.2.3)

That is, each trade captures the expected alpha but pays price impact, since the latter
eventually disappears.

3.2.3 Solution in impact space

The statistical arbitrage problem (3.2.3) has a straightforward, closed-form solution for
arbitrary alpha signals, even for non-linear price impact described by the AFS model.
This result hinges on a simple but powerful observation, proven in Hey et al. (2025)
using a technique introduced by Fruth et al. (2013). The key insight is that, for any
position Q or, equivalently, the corresponding impact J (resp., I),

E [YT ] = E
[

1
τ

∫ T

0
(αtJt − λ|Jt|1+c)dt −

∫ T

0
Jtdαt + αT JT − 1

1 + c
|JT |1+c

]
. (3.2.4)

Whence, by switching the control variables from positions Qt to the corresponding
impact Jt (“passing to impact space”), the complex control problem (3.2.3) becomes
a simple pointwise maximization.7 The optimal impact in turn is

I∗
t = λ sign (J∗

t ) |J∗
t |c =


1

1+c (αt − τµα
t ) , t ∈ (0, T ),

αT , t = T.
(3.2.5)

One recovers the corresponding optimal positions via

Q∗
t = J∗

t + 1
τ

∫ t

0
J∗

s ds. (3.2.6)

Even though the optimal trading strategy Q∗ is complex, switching to impact space
allows one to retain a straightforward linear relationship between the optimal policy as
well as the current alpha signal and its decay. Up to a bulk trade at the terminal time
exhausting all remaining alpha, it is optimal to keep impact equal to a constant fraction
of the alpha signal, adjusted for alpha decay relative to impact decay. The intuition
for this adjustment is that one has to trade more aggressively and accept higher impact
costs for signals that decay quickly compared to impact, as Gârleanu and Pedersen
(2013) highlight for linear impact models:

“The alpha decay is important because it determines how long time the
investor can enjoy high expected returns and, therefore, affects the trade-off
between returns and transactions costs.”

7A similar change of variable to integrated impact is used in Gârleanu and Pedersen (2016); Isichenko
(2021).
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The fraction of the adjusted alpha to pay in impact depends on the concavity pa-
rameter c of the price impact function. For linear price impact (c = 1), the optimal
impact equals one-half the adjusted alpha (Isichenko, 2021). For strictly concave price
impact functions, this ratio increases and reaches two thirds for c = 1/2 compatible with
square-root impact. As a result, linear models prescribe to trade less aggressively than
is optimal in their strictly concave counterparts. The impact scale λ does not appear in
the formula for the optimal impact – it only determines the corresponding trades needed
to attain the optimal impact state.

3.2.4 Implications for Trading

In trading applications, it is common to normalize the impact scale λ as

λ = σ

V c
g(c, τ), (3.2.7)

where V is the average daily volume (Almgren et al., 2005). This normalization expresses
the quantities of interest in trader-friendly units: return predictions compare to the
volatility σ of price changes and trading volumes are expressed as fractions of the average
daily volume V . With this normalization, the price impact coefficient also becomes
comparable across different assets; our notation g(c, τ) highlights that this prefactor
depends on the corresponding impact concavity c and decay timescale τ .

Long-term alpha signal

We first illustrate the application of the general trading rule (3.2.5) for the simplest case
where αt = α is constant. This means that the signal predicts a return that happens
in the distant future, e.g., an event at the end of the month when focusing on today’s
trading. For square-root impact (c = 1/2), Equation (3.2.5) then simplifies to

I∗ = 2
3α. (3.2.8)

That is, the optimal trading strategy (for sizeable orders) pays two thirds of the constant
alpha in impact. The corresponding optimal order size is

QT

V
= Λ−2 · sign(α)

(
α

σ

)2
, where Λ = g(1/2, τ)√

1 + 4
9

T
τ

. (3.2.9)

Conversely, one implies a constant alpha from a long-term order of size Q via the formula

α

σ
= Λ · sign(Q)

√
|Q|
V

. (3.2.10)

The order size formula 3.2.9 helps portfolio managers size trades considering price im-
pact’s square-root law. Then, traders use the implied alpha formula 3.2.10 to agree on a
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baseline alpha with the portfolio team. After establishing a baseline alpha, the trading
team can linearly add their own short-term signals into the trading strategy.

Mean-reverting alpha signal:

Another standard specification assumes that the alpha signal αt is an Ornstein-Uhlenbeck
process with relaxation time θ:

dαt = −1
θ

αtdt + σdWt.

Then, µα
t = −θ−1αt, i.e., the alpha decays exponentially in the absence of new infor-

mation. In this model, a statistical arbitrage strategy continuously updates its signals
based on a steady information stream. The optimal impact in this context is

I∗ = 2
3

(
1 + τ

θ

)
α. (3.2.11)

Whence, mean-reverting alphas should always be traded more aggressively than constant
ones, and the size of this adjustment depends on the relative magnitudes of impact decay
τ and alpha decay θ.

If τ > cθ, then I∗ > α, implying that impact should decay at least twice as fast as
alpha. This observation suggests that impact decay, driven by changing liquidity, should
indeed occur on the fastest timescale. When θ → τ , the risk of losses due to impact costs
increases. At these timescales, microstructure effects may become significant. Therefore,
we focus on intraday alpha decay, which typically exceeds impact decay.

3.3 Empirical Estimation

3.3.1 Description of the data

Our empirical analysis uses proprietary Capital Fund Management (CFM) trading data
comprised of 1.9 · 105 metaorders of future contracts traded over 2012-2022. The time
at the start and the end of each metaorder is indicated, as well as the mid-price and
the number of child orders. All metaorders were executed through at least three child
orders and accounted for a fraction between 0.01% and 10% of ADV; the average order
size was of the order of 0.1%. No metaorder was traded longer than one day and the
average execution time was 3h.

3.3.2 Fitting methodology

Price returns are fitted against the increments of a power-law price impact function
of the form (3.2.1) with parameters c, τ and λ (normalized as in (3.2.7)). Since i) no
metaorder in the sample lasts more than one trading day, and ii) each of them is executed
with a profile close to a TWAP, the volume impact J is computed under the assumption
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that trades are executed uniformly during the execution time ∆t of each metaorder.
Note that the alpha signals driving the trade decisions are typically realized over a
time window much larger than one day, implying that it is appropriate to attribute to
impact, rather than alpha, the average price variation occurring during the execution of
metaorders in the sample.

3.3.3 Estimating impact concavity

To estimate the price impact parameters with impact decay, we consider a grid of impact
decays τ and concavity parameters c. For each pair, we then first compute the volume
impact Jt corresponding to the impact timescale τ according to (3.2.2); then the price
impact It is computed for the corresponding concavity parameter c. With the impact
variable at hand, we then run a linear regression of price changes against impact to
determine the prefactor (3.2.7).

Figure 3.2 shows the model’s statistical fit R2(c, τ) and prefactor g(c, τ) across a
broad range of concavity and decay parameters. The heatmap of R2 in Subfigure 3.2a
shows an ellipsoid around the point estimates (ĉ, τ̂). Figure 3.2c plots the statistical
sensitivity with respect to the concavity parameter c, when the point estimate of the
decay parameter τ̂ = 0.3 days remains fixed.

As the concavity parameter c varies, the model’s R2 peaks at ĉ = 0.50 and decreases
markedly around this point estimate.8 The prefactor g(c, τ̂) increases with increasing
concavity parameter. This behavior arises because, when normalized by V c, the linear
model tends to underestimate the impact costs compared to a concave model. Con-
sequently, the prefactor adjusts more than quadratically to account for this difference.
Notably, when c = 0.5, the prefactor g(c, τ̂), aligning well with established literature, as
this configuration accurately captures impact costs.

3.3.4 Estimating impact decay

To investigate the statistical sensitivity with respect to the impact decay, the concavity
parameter is fixed at the point estimate ĉ = 0.50 and the impact decay τ varies. Figure
3.2d displays R2(ĉ, τ) and g(ĉ, τ). There is a peak at τ̂ = 0.3 days, indicating that one
measures the short-time scale of impact decay. The model’s prefactor remains relatively
stable for timescales larger than 0.3 days.

The primary takeaway is that the statistical loss is significantly more sensitive to
concavity than to decay. For example, misspecifying c = 1 instead of the point estimate
ĉ = 0.50 reduces R2 by more than 30%. Conversely, getting τ wrong by a factor of ten
reduces R2 by less than 10%.9

8The magnitude of the model’s R2 is consistent with results published in papers using the public
trading tape. Indeed, when one runs the price impact model on the full trading tape, the R2 varies
between 10% and 20%. However, in this study, only CFM’s metaorders are used. Therefore, the R2

drops in line with the fraction of the public tape CFM’s orders represent.
9This is not a new observation: studies across many datasets and asset classes agree on price impact’s

concavity and general order of magnitude but disagree on decay. The reason is that different orders
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Figure 3.2: Calibration results. Panel (a) shows the statistical sensitivity; Panel (b)
depicts the model’s prefactor across ĉ, τ̂ . The sensitivity analysis yields an ellipsoid
around the point estimates. The model’s prefactor remains roughly constant along the
τ̂ -axis and increases with concavity c. Panel (c) shows the sensitivity across c for τ̂ = 0.3
days in green. The corresponding fitted prefactor g(c, τ̂) is displayed in blue. Panel (d)
displays the sensitivity and the model’s pre-factor across τ for the point estimate ĉ.
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These empirical results do not imply that calibrating impact decay correctly is unim-
portant. Indeed, a central result in Section 3.4 is that a strategy’s P&L can be highly
sensitive to τ , even if statistically, R2 is less sensitive to τ .

3.4 Sensitivity Analysis

We now combine the previous theoretical and empirical results to quantify the perfor-
mance losses caused by trading based on a misspecified model.

3.4.1 Quantifying misspecification costs

Recall that, for given estimates c, τ of impact concavity and decay, the corresponding
fitted prefactor is

λ(c, τ) = σ

V c
g(c, τ).

Therefore, assuming c, τ are the correct model parameters, a strategy trading an alpha
signal αt with drift rate µα

t will implement

It(c, τ) = αt − τµα
t

1 + c
or, equivalently, Jt(c, τ) =

(
αt − τµα

t

(1 + c)λ(c, τ)

)1/c

.

We call I(c, τ) or, equivalently, J(c, τ), the misspecified policy. This is the optimal policy
when the impact parameters c, τ correctly describe price impact, but not if these param-
eters differ from the price impact parameters c∗, τ∗ of the actual data generating model.
To ease notation, we omit the corresponding variables when one of the parameters is
held fixed at its actual value, e.g., we use the shorthand I(τ) = I(c∗, τ).

The P&L of the misspecified policy J(c, τ) under the actual price impact model with
parameters c∗, τ∗ is

U
(
J(c, τ); c∗, τ∗

)
= 1

λ∗
E
[

1
τ∗

∫ T

0
((αt − τ∗µα

t )Jt(c, τ) − λ|Jt(c, τ)|1+c∗)dt

+ αT JT (c, τ) − 1
1 + c∗

|JT (c, τ)|1+c∗

]
.

This general formula is straightforward to implement numerically in a backtest. For
instance, statistical arbitrage teams can plug in historical alpha signals to measure the
expected P&L of trading based on c, τ when the actual parameters are c∗, τ∗.

To illustrate the misspecification formula’s implications, Sections 3.4.2 and 3.4.3
cover two common cases. By specifying concrete parametric alpha signals, we quantify
the cost of misspecifying concavity or decay in closed-form. This reveals the dependence

decay at different timescales, which are better captured by a multi-exponential or power law decay
kernel. With linear price impact, there are some optimization results for such decay kernels (Gatheral
et al., 2012; Abi Jaber and Neuman, 2022). The companion paper Hey et al. (2025) reports first results
for nonlinear impact and multiscale impact decay.
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on alpha signal characteristics without relying on a backtest.

3.4.2 Misspecification cost of impact concavity

We first consider the simplest case of a constant alpha signal: αt = α, so that µα
t = 0.

For example, this assumption is reasonable when trading intraday based on a signal that
predicts a return past today’s close, such as an event taking place the next day or week.

As impact decay only plays a minor role in this context,10 we assume for simplicity
that it is correctly specified (τ = τ∗) and focus on the misspecification cost of the
concavity parameter c ̸= c∗. In words:

How much P&L does the strategy lose if it trades with the wrong price
impact concavity?

For example, one canonical case is when c∗ = 0.5 and c = 1: one estimates the cost of
implementing a linear price impact model when actual impact follows a square-root law.

The expected P&L for the misspecified policy is

U
(
J(c); c∗

)
= σ V

g(c)1/c

[(
α

σ

)1+1/c ( T

τ∗(1 + c)1/c
+ 1

)

− g(c∗)
g(c)c∗/c

(
α

σ

)(1+c∗)/c ( T

τ∗(1 + c)(1+c∗)/c
+ 1

1 + c∗

)]
.

The natural comparison for this is the expected P&L U(J(c∗); c∗) of the optimal
policy for the actual concavity parameter c∗:

U
(
J(c∗); c∗

)
= σ V

g(c∗)1/c∗

(
α

σ

)1+1/c∗ c∗
1 + c∗

(
T

τ(1 + c∗)1/c∗
+ 1

)
.

In this setting, the primary alpha characteristic is the signal’s Sharpe ratio, α/σ.
A core result from Figure 3.3 is that misspecification costs are more sensitive to c as
a signal’s Sharpe ratio increases. Therefore, the stronger a team’s alpha signal, the
more important it becomes to correctly estimate the price impact model’s concavity
accurately.

In addition to quantifying the empirical sensitivity of P&L to misspecifications of the
concavity parameter c, the closed-form formulas also allow one to compute how wrong a
parameter can become before turning profitable strategies unprofitable. Indeed, for each
true parameter c∗, there exists a critical value cmin such that, for any choice c < cmin,
the expected P&L becomes a decreasing function of the alpha signal. Naturally, statis-
tical arbitrage strategies crucially need to avoid this critical regime where adding more
predictive power leads to worse outcomes. Figure 3.3 illustrates the sharpness of the
phase transition between profitable and non-profitable misspecified trading strategies.

10Indeed, for constant alpha, the P&L of the believed strategy only depends on the impact decay
parameter τ through the estimate of the magnitude of price impact λ(c, τ). As this dependence is rather
weak, impact decay only plays a minor role in the absence of alpha decay.
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Because misspecification costs become more sensitive with higher alpha Sharpe ratios,
the critical value becomes tighter as the Sharpe increases. Again, this highlights the
importance of correctly estimating price impact’s concavity when trading high Sharpe
ratio signals.

A crucial insight is that this misspecification risk is asymmetric: even for large over-
estimates c > c∗, the expected P&L typically remains positive (except for very small
Sharpe ratios). The intuition is that overestimating the concavity parameter c leads the
strategy to submit smaller trades. While this is suboptimal and sacrifices some profit
opportunities, it will only lead to shrinking profits but not losses. Conversely, underesti-
mates below the critical value cmin < c can lead to significant losses, as the corresponding
trading strategy submits outsized trades leading to excessive trading costs.

While these results are derived in a concrete model with a convenient closed-form
solution, we expect them to remain true qualitatively across a much wider range of
models. This leads to a practical takeaway when fitting price impact models: when
considering confidence intervals for a price impact model’s concavity, the robust solution
is to deploy a more conservative estimate from the upper part of the confidence interval,
i.e., use a impact model that is somewhat less concave than the point estimate.
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Figure 3.3: Profit ratios between correctly and incorrectly specified strategies when
the ground truth is c∗ = 0.5. Left panel: Heat map of the profit ratio across c and
α/σ. Right panel: Profit ratio across c for an alpha signal with Sharpe α/σ = 1. The
profits are asymmetric: over-estimating concavity (low c) quickly leads to losses, while
underestimating concavity only shrinks profits.

3.4.3 Misspecification cost of impact decay

We now turn to misspecification of the impact decay parameter τ , while keeping the
concavity parameter c fixed to its correct value c∗. As impact decay predominantly
interacts with the alpha decay, we study this for a mean-reverting alpha with
µα

t = −αt/θ. To obtain crisp results, we again focus on the steady-state limit of the P&L.
Unlike the model’s statistical R2, it turns out that the expected P&L is surprisingly
sensitive to misspecifications of τ relative to the ground truth τ∗.
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For the misspecified policy, we have

U
(
J(τ); τ∗

)
=σ V

τ∗

( 1 + τ/θ

g(τ)(1 + c∗)

)1/c∗ (
1 + τ∗

θ
− g(τ∗)(1 + τ/θ)

g(τ)(1 + c∗)

)
× lim

T →∞

1
T

[∫ T

0

∣∣∣∣αt

σ

∣∣∣∣1+1/c∗

dt

]
.

The optimal value derived from the policy for the actual impact decay τ∗ in turn is

U
(
J(τ∗); τ∗

)
=σ V

τ∗

c(1 + τ∗/θ)1+1/c

g(τ∗)1/c(1 + c)1+1/c
× lim

T →∞

1
T

[∫ T

0

∣∣∣∣αt

σ

∣∣∣∣1+1/c

dt

]
.

In this setting, the key alpha characteristic is its decay θ. More specifically, the
ratio of performances for the misspecified and optimal policies mostly depends on the
estimated and true impact decays through their ratios relative to alpha decay, τ/θ and
τ∗/θ. Indeed, as depicted in Figure 3.2d, g(τ∗) ≈ g(τ) is a good approximation for a
wide range of decay parameters; with this, the ratio of performance simplifies to

U
(
J(τ); τ∗

)
U
(
J(τ∗); τ∗

) = 1
c

( 1 + τ/θ

1 + τ∗/θ

)1/c (
1 + c − 1 + τ/θ

1 + τ∗/θ

)
.

The profit ratio between misspecified and optimal policy is displayed in Figure 3.4.
There is a sharp boundary between the profitable and unprofitable regions that depends
linearly on the ratios τ/θ and τ∗/θ. This boundary appears then curved in log-log scale
on the left panel in Figure 3.4 separating the positive and negative profit regions. A
wrong estimation of impact decay for a long-lasting alpha signal (small θ) is less costly
than for a fast decaying one.
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Figure 3.4: Profit ratio between correctly and incorrectly specified strategies when τ∗ =
0.3 days. Left panel: Heat map of the profit ratio across τ and θ in log-log scale. Right
panel: Profit ratio across τ in log-scale for an alpha signal with a decay timescale of 1
day. The profits are asymmetric: overestimating decay (high τ) quickly leads to losses,
while underestimating decay only shrinks profits.
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Like for impact concavity, the costs of misspecifying impact decay are highly asym-
metric. Indeed, overestimating impact decay quickly turns profitable alpha signals un-
profitable, as illustrated in the right panel of Figure 3.4 for a moderate alpha decay
time scale of 1 day. The intuition is that overestimates τ > τ∗ lead to larger than op-
timal impacts, i.e., overly aggressive trading just like underestimates of the concavity
parameter.

3.5 Conclusion

We investigated the effect that the misspecification of the price impact model has on
the performance of a trader. The P&L cost of getting an impact parameter wrong can
be evaluated using the AFS model’s tractable misspecification cost formula. This P&L-
driven approach complements a statistical approach and shows that the opportunity
costs of getting model parameters wrong are asymmetric:

• It is better to over- than under-estimate c. An excessively concave price impact
model can lead to losses.

• It is better to under- than over-estimate τ . A price impact model with excessively
fast impact decay can lead to losses.

In both cases, overly aggressive trading has a substantially bigger effect than an overly
cautious approach. While we illustrate this with the closed-form solutions for the AFS
model, these insights are expected to remain qualitatively true for many models. There-
fore, a general approach when considering confidence intervals for price impact model
parameters is to deploy parameters within the error band that lead to more conservative
trades.

Our results thereby support the relevance of a robust approach to optimal trading
problems in the presence of trading costs, and supports the idea of jointly tackling
parameter estimation and alpha exploitation.
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Chapter 4

Concave Cross Impact

Summary

The price impact of large metaorders is well known to be a concave function of
their size. We discuss how to extend models consistent with this “square-root law”
to multivariate settings with cross impact, where trading each asset also impacts
the prices of the others. In this context, we derive consistency conditions that
rule out price manipulation. These basic requirements make risk-neutral trading
problems tractable and also naturally lead to parsimonious model specifications
that can be calibrated to historical data. We illustrate this with a case study
using proprietary CFM metaorder data.

Based on Hey et al. (2024b): N. Hey, I. Mastromatteo, J. Muhle-Karbe. Concave
Cross-Impact. 2024. (submitted to Management Sciences)

4.1 Introduction

Price impact is the main source of trading costs for large institutional investors. The
impact of large metaorders builds up over time and then gradually decays (Hasbrouck,
1991; Biais et al., 1995). Crucially, the magnitude of this effect is not linear, but better
described by a “square-root law” (Loeb, 1983; Hasbrouck, 1991).

When trading several securities simultaneously, it is natural to expect that trades
in one asset do not only affect its own price (“self impact”) but also shift the prices of
other related securities (“cross impact”). In particular, for assets that are closely linked
– such as futures on the same underlying with different maturities – cross impact is
bound to play a major role. For example, rolling over futures positions appears costly
if one considers each trade’s impact separately. However, accounting for cross impact
reduces the trading costs for such strategies significantly, as selling one contract partially
offsets the impact of buying the other. Conversely, if several futures contracts are traded
based on similar alpha signals, then cross impact compounds the trading costs across
assets.
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Over the last decade, a number of studies have investigated linear cross impact
models.1 In contrast, nonlinear cross impact models consistent with square-root self
impact are virtually uncharted territory, both in terms of theory and empirical analysis.
A key reason for this impasse is that with several traded assets, guaranteeing the absence
of “price manipulation” becomes highly nontrivial. Ruling out the existence of such
strategies that turn price impact into profits is a basic consistency requirement any
price impact model needs to satisfy. Otherwise, numerical optimizers naturally converge
towards extreme strategies that seek to exploit these inconsistencies in the model, but
are unlikely to be effective in practice.

Similarly as for no-arbitrage conditions in option pricing models (Schönbucher, 1999),
the absence of price manipulation is relatively easy to characterize for a single traded
asset (Fruth et al., 2013, 2019; Hey et al., 2025). In particular, no conditions are required
when the price impact parameters do not change over time. In contrast, nontrivial
conditions are required for multivariate models with linear cross impact already with
constant parameters (Alfonsi et al., 2016; del Molino et al., 2020; Tomas et al., 2022b;
Rosenbaum and Tomas, 2022; Abi Jaber et al., 2024). This raises the natural question
if and how these consistency conditions can be extended to nonlinear models compatible
with the univariate square-root law.

On the empirical side, a first basic question is whether cross impact can be reliably
measured from price and trading data, and whether it displays the same nonlinear form
as self impact. The next key challenge in turn is to build parsimonious models for cross
impact that guarantee the absence of price manipulation and can be fitted efficiently to
data.

The present study breaks new ground in all of these directions using a multi-asset
version of the nonlinear price impact model of Alfonsi, Fruth, and Schied (2010). By
considering suitable parametric families of trading strategies as in Gatheral (2010), we
derive necessary conditions for the absence of price manipulation that substantially
narrow down the parameter space. Once these conditions are imposed, risk-neutral
optimal trading problems can in fact be reduced to simple pointwise maximizations by
“passing to impact space” as in (Fruth et al., 2013; Hey et al., 2025). More specifically,
switching control variables from positions held to impact caused does not directly lead
to a pointwise problem here due to some intractable cross terms. However, as in Bilarev
(2018), absence of price manipulations dictates that these intractable terms have to
vanish. Whence, for all well behaved models, risk-neutral optimization problems can
be solved by pointwise maximization. This in turn allows one to determine whether a
given model indeed guarantees that price manipulation is not possible.

In particular, we find that there is a natural subclass of models for which the mul-
tivariate optimal trading problem decouples into simple one-dimensional subproblems,
for which wellposedness and optimal trading strategies are well understood (Hey et al.,

1See, e.g., (Schied et al., 2010; Gârleanu and Pedersen, 2013, 2016; Alfonsi et al., 2016; Benzaquen
et al., 2017; Tsoukalas et al., 2019; Horst and Xia, 2019; Tomas et al., 2022a; Abi Jaber et al., 2024).
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2025). Even though the optimal impact states for each asset do not depend on the
magnitude of cross impact in this case, the corresponding optimal trades evidently do.
Indeed, with positive cross impact, much less trading in the same direction is needed
to create the same amount of impact, but much bigger trades of opposite signs can be
implemented.
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Figure 4.1: Average signed differences Iij between the prices of asset j at the beginning
and end of metaorders for asset i, plotted against the size of the metaorders Qi (nor-
malized by the geometric mean

√
V iV j of the average daily trading volumes of assets j

and i). The shaded regions are bootstrap confidence intervals.

The relevance and applicability of this model class is in turn illustrated by an em-
pirical case study based on proprietary metaorder data from Capital Fund Management
(CFM). We first perform a simple comparison of the arrival prices at the beginning of
each metaorder to the peak impact incurred at their completion. As illustrated in Fig-
ure 4.1, this demonstrates that for highly correlated assets2 cross impact measurements
are highly significant and depend on metaorder sizes in the same concave manner as
for self impact. Moreover, the figure clearly illustrates the impact of different trading
scenarios. Indeed, when both assets are traded in the same direction, then self and cross
impact compound. In contrast, they largely offset each other when the assets are traded
in opposite directions.

Building on these findings, we then show that it is also possible to fit our dynamic
cross impact model to the data. To this end, the consistency conditions derived in the
theoretical part of the paper play a key role. On the one hand, these hard code the
absence of price manipulation strategies. On the other hand, they substantially narrow
down the parameter space and thereby lead to much more parsimonious models that
can be calibrated efficiently.

We validate the feasibility and flexibility of this approach by fitting bivariate impact
models to pairs of assets. Figure 4.2 displays how the fitted model parameters depend

2Here, we focus on futures contracts with the same underlying but different maturities so that the
average return correlations are above 90%.
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on the return correlation of the assets. We see in the top panel that the concavity of
the impact function is largely insensitive to the correlation parameter and in line with
other studies corroborating the square root law. The middle panel shows that impact
decay tends to become slower for highly correlated assets. The intuition for this is that
many of the highly correlated assets are commodity futures contracts, which are not as
liquid as the index futures that make up many of the less correlated asset pairs. The
bottom panel of Figure 4.2 plots the proportion of total impact accounted for by self
impact. We see that for assets with low correlation, cross impact play only a minor role
but, for highly correlated assets, self and cross impact become almost interchangeable.
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Figure 4.2: Parameter estimates for a bivariate cross impact model. The common impact
concavity c, impact decay rate β and proportion wS(c, β) of total impact caused by self
impact is plotted against the correlation between the assets.

In summary, this paper proposes a general consistent framework for modeling the
concave cross impact of trading multiple assets simultaneously. In this setting, the
absence of price manipulation can be guaranteed, risk-neutral trading problems can be
solved in closed form, and the resulting models can be estimated efficiently from data.

The remainder of this article is organized as follows. Section 4.2 introduces our
multivariate nonlinear price impact model. Subsequently, in Section 4.3 we formulate
risk-neutral optimal trading problems in this context and then reformulate these “in
impact space” in Section 4.4. In Section 4.5, we in turn derive necessary conditions for
the absence of price manipulation and then show in Section 4.6 that these conditions
allow to reduce the risk-neutral trading problems to simple pointwise optimizations.
Finally, our empirical case study is described in Section 4.7. For better readability, the
derivations of the no-price-manipulation conditions are delegated to the appendix.

80



4.2. MODELING CONCAVE CROSS IMPACT

4.2 Modeling Concave Cross Impact

We consider a financial market with 1 + d assets. The first one is safe, with price
normalized to one. The other d assets are risky: their unaffected prices are modeled
by an Rd-valued Itô process St. This process describes price changes due to exogenous
events such as news or the trades of other market participants.

The focus of the present study is how the transactions of a large trader shift these
baseline prices, both directly through the “self impact” on the securities purchased or
sold, but also through the “cross impact” trades in one asset have on the prices of the
others. Self impact is well known to be a nonlinear function of trade sizes, and gradually
decays from its peak value (Hasbrouck, 1991; Hasbrouck and Seppi, 2001). These stylized
facts are captured in a parsimonious manner by the model of Alfonsi, Fruth, and Schied
(2010) (henceforth AFS), where the price impact of the trades (dQs)s≤t until time t is
a nonlinear function h(Jt) of an exponentially weighted moving average
dJt = − 1

τ Jtdt + λdQt of current and past trades.3 Here, the exponential smoothing
captures impact decay, whereas a nonlinear impact function h(·) allows to account for
a concave relationship between impact and executed volume.

We extend this model to a multi-asset setting with cross impact as follows.4 Trading
strategies are described by the trader’s holdings Qt = (Q1

t , . . . , Qd
t )⊤ in the d risky assets.

These in turn drive a multivariate exponential moving average Jt = (J1
t , . . . , Jd

t )⊤:

dJt = −BJtdt + ΛdQt, B, Λ ∈ Rd×d. (4.2.1)

For a scalar function h : R → R that is increasing, odd, as well as nonnegative and
concave on R+, the price impact It = (I1

t , . . . , Id
t )⊤ of the large trader is in turn given

by

It =
d∑

a=1
Lah(Ja

t ), where La ∈ Rd for a = 1, . . . , d. (4.2.2)

This means that the price impact in each asset i = 1, . . . , d is a linear combination
Ii

t =
∑d

a=1 Liah(Ja
t ) of concave functions of the liquidity factors Ja

t , a = 1, . . . d. The
liquidity factors can be the moving averages of the individual assets, for example, or
also moving averages of portfolio trades, e.g., in the overall market. With the matrix of
factors L = (L1, . . . , Ld) ∈ Rd×d and writing, with a slight abuse of notation,
h(Jt) = (h(J1

t ), . . . , h(Jd
t ))⊤ ∈ Rd, we can then represent the price impact concisely in

3An apparently similar but fundamentally different phenomenon is the nonlinear price impact of
individual child orders documented empirically in Bouchaud et al. (2004), for example. Muhle-Karbe
et al. (2024) show that such “local concavities” can be proxied by a linear price impact model on a
mesoscopic scale in line with empirical results of Patzelt and Bouchaud (2018). In contrast, there is no
such effective linear model for the “global concavities” observed at the metaorder level and described by
the AFS model.

4Our model is a special case of the general framework proposed by (Bilarev, 2018, Chapter 5), where
impact can also depend on the level of the unaffected price but no concrete nonlinear models are specified
for multiple assets.
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matrix-vector notation as
It = Lh(Jt).

Remark 4.2.1. Suppose the price impact function is of the standard power form
h(x) = sgn(x)|x|c, c ∈ (0, 1]. Then, for a single asset, its homotheticity implies that
changing the outside multiplier L has the same effect as rescaling the push factor Λ by
an appropriate power of the same factor. In contrast, in the multi-asset case, sums of
powers and powers of sums generally lead to different models.

A key question for the cross impact model (4.2.2) is whether it can guarantee the
absence of “price manipulation”. These are trading strategies that produce positive
expected profits not because of accurate forecasts about the unaffected price, but by
combinations of purchases and sales that turn price impact into profits. Such strategies
are highly model dependent and unlikely to be effective in practice. Ruling them out
therefore is a basic requirement any price impact model should satisfy, similar to the
absence of arbitrage for option pricing models.

For a single asset, the AFS model with constant impact parameters does not allow
price manipulation (Hey et al., 2025). However, with several assets, avoiding price
manipulation becomes much more delicate already when impact is linear (Alfonsi et al.,
2016; del Molino et al., 2020; Tomas et al., 2022b; Rosenbaum and Tomas, 2022; Abi
Jaber et al., 2024; Muhle-Karbe and Tracy, 2024). In addition to understanding how
to turn price forecasts into trades, characterizing the absence of price manipulation
strategies in turn is another major motivation for studying the risk-neutral optimization
problems that we turn to next.

4.3 Risk-Neutral Goal Functional

We now derive the trader’s profits and losses (P&L) when trading with nonlinear price
impact of the form (4.2.2). To this end, we first focus on smooth trading strategies
dQt = Q̇tdt, for which the trade at time t is executed at St + It, the unaffected price
shifted by the price impact accumulated so far.5 If the trader’s position QT at the
terminal time T is evaluated with the unaffected price to avoid illusionary profits, then
the P&L accumulated over the trading interval [0, T ] is

YT = Q⊤
T ST −

∫ T

0
(St + It)dQt.

Writing
αt = Et [ST − St]

5In contrast, discrete block trades require a delicate specification of where they need to be settled
between the pre- and post-trade prices to be consistent with approximations of the block trade by
smooth strategies. We sidestep this technical issue by first focusing on smooth strategies only and
then reformulating the corresponding expected P&L’s “in impact space”, where the extension to general
strategies is straightforward.
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for the trader’s price forecast at time t (“alpha”) and integrating by parts, the expected
P&L then is

E
[∫ T

0
(αt − It)⊤dQt

]
. (4.3.1)

That is, each trade earns alpha and pays impact. The P&Ls are simply added across
assets, but interact through the cross impact that trades in one asset may have on the
execution prices of the others.

Remark 4.3.1. Suppose the alpha signal

αt = Et[Sτ − St]

forecasts price changes until a time τ larger than the endpoint T of the trading interval.
A typical example is a long-term alpha signal that does not change at all over a trading
day. Then, the risk-neutral goal functional (4.3.1) remains unchanged if the terminal
position is valued with the forecast ET [Sτ ] at time T .

4.4 Passage to Impact Space?

For single-asset models, the risk-neutral goal functional (4.3.1) can be optimized by a
straightforward pointwize maximization after “passing to impact space”, i.e., switching
the control variable from the risky positions Qt to the corresponding moving averages
Jt (Fruth et al., 2013; Bilarev, 2018; Ackermann et al., 2021; Hey et al., 2025).

In our multi-asset setting, as long as the push factor Λ is invertible (which we
assume from now on), positions Qt and the corresponding moving averages Jt are still
in a one-to-one correspondence:

dQt = Λ−1BJtdt + Λ−1dJt. (4.4.1)

Using this identity to replace the trades dQt in (4.3.1), the expected P&L becomes

E
[∫ T

0
(αt − Lh(Jt))⊤

(
Λ−1BJtdt + Λ−1dJt

)]
.

Via integration by parts, this can be rewritten as

E
[∫ T

0

(
ᾱ⊤

t Jt − h(Jt)⊤ζJt

)
dt −

∫ T

0
h(Jt)⊤θdJt + α⊤

T Λ−1JT

]
. (4.4.2)

Here (assuming invertibility of L), we have defined

ζ = L⊤Λ−1B, θ = L⊤Λ−1, and ᾱt = ζ⊤L−1αt − θ⊤L−1µα
t , (4.4.3)

for the drift rate µα
t (“alpha decay”) of the alpha signal αt.
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Remark 4.4.1. The transformations (4.4.3) describe a change of variable from physical
space to liquidity factor space. More specifically, L−1 maps prices into factor space; θ

in turn is the push factor in these new coordinates and ζ accounts for the contribution
of impact decay.

For a single risky asset, one can replace the term h(Jt)dJt in the P&L (4.4.2) by
applying Itô’s formula to the antiderivative H(JT ) of the impact function. The integrand
of the dt terms and the terms associated with the terminal time T can in turn be
maximized pointwise in a straightforward manner (Hey et al., 2025). In the multi-asset
version of the model we consider here, this trick no longer works, as one cannot replace
the cross terms h(Ja

t )dJb
t for a ̸= b in this way.

We therefore first approach the problem from a somewhat less ambitious angle.
To wit, in the spirit of Gatheral (2010); Bilarev (2018); Schneider and Lillo (2019),
we consider some concrete parametric families of trading strategies and analyze what
restrictions need to be imposed on the matrices θ and ζ from (4.4.3) to rule out price
manipulation, i.e., trades for which a positive expected P&L is generated by price impact
rather than the presence of an alpha signal.

4.5 Necessary Conditions for the Absence of Price Manip-
ulation

To derive necessary conditions for the absence of price manipulation, we suppose there
is no alpha signal and focus on smooth deterministic trading strategies, for which the
associated moving averages also are smooth. Then, the expected impact cost simplifies
to

CT =
∫ T

0

(
h(Jt)⊤ζJt + h(Jt)⊤θ

dJt

dt

)
dt. (4.5.1)

The principle of “no-dynamic-arbitrage” (Gatheral, 2010) states that price manip-
ulation is not possible, in that this cost of trading indeed is positive for any nontrivial
round-trip strategy. Unlike for a single risky asset, many different combinations of buy-
ing and selling actions need to be considered in the present context. To derive separate
conditions on the elements of the matrices θ and ζ, we design strategies in the space of
liquidity factors Ja

t for a = 1, . . . , d, for which either the first or the second term (4.5.1)
becomes negligible.

More specifically, to isolate the role of the matrix ζ, we consider trading strategies
that are symmetric around a time point T⋆/2 > 0. These allow to cancel the θ-term
in (4.5.1) and in turn yield conditions on the matrix ζ. Specifically, we construct strate-
gies such that for each asset a, Ja

T⋆/2−ϵ = Ja
T⋆/2+ϵ, for all ϵ ∈ [0, T∗/2]. Note that

this does not mean that the corresponding trades Qa
t are symmetric. This provides

another illustration how the passage to impact space simplifies calculations – not just
for pointwise maximization but also to construct convenient test strategies.
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Figure 4.3: Symmetric strategy (4.5.4) (left panel) and impulsive strategy (4.5.8) (right
panel).

Under sufficient regularity, such symmetry in Ja
t implies that its time derivative is

antisymmetric:

dJa
T⋆/2−ϵ

dt
= −

dJa
T⋆/2+ϵ

dt
. (4.5.2)

As a consequence, the θ-terms in the cost functional (4.5.1) in turn vanish on each
interval [T⋆/2 − ϵ, T⋆/2 + ϵ] around the point T⋆/2.

Conversely, to focus on the matrix θ, we can consider “impulsive” strategies that
quickly build up and liquidate positions in pairs of the assets. Indeed, for such fast
trading strategies the derivatives dJa

t /dt of the impact factors states become larger and
larger and therefore dominate the impact costs (4.5.1).

In the next two sections, we consider specific examples for such symmetric and im-
pulsive strategies (illustrated in Figure 4.3), for which the impact costs can be computed
in closed form. This in turn allows us to derive explicit conditions that are necessary to
rule out price manipulation.

4.5.1 Symmetric strategies

For a single risky asset, gradually building up a target position and then reverting the
trade always leads to positive trading costs (Gatheral, 2010). With multiple risky assets,
however, price manipulation can be possible even with such a simple strategy. To rule
this out, nontrivial conditions have to be imposed on the matrix ζ.

To derive such conditions, we think of the two liquidity factors a and b as virtual
assets that are traded using a strategy (Ja

t , Jb
t ) with the symmetries illustrated in the

left panel of Figure 4.3:

• On [0, T⋆], impact in one of the assets is first built up and then reversed in a
symmetric manner. The other asset is traded in exactly the opposite direction.

• On [T⋆, T ], the pattern is the same but the direction of trade is reversed.

85



CHAPTER 4. CONCAVE CROSS IMPACT

Observe that by (4.4.1) and (4.4.3),

L⊤QT =
∫ T

0
L⊤Λ−1BJtdt +

∫ T

0
L⊤Λ−1dJt = ζ

∫ T

0
Jtdt + θ

∫ T

0

dJt

dt
dt. (4.5.3)

Due to the symmetry (4.5.2), the θ-term vanishes. We can therefore always choose a
suitable magnitude of the trade reversal for which the round-trip condition
0 = QT = (L⊤)−1L⊤QT holds. A particularly convenient parametrization to compute
the corresponding impact costs in closed form is

(Ja
t , Jb

t ) = (ja sin(t), −jb sin(t)), 0 ≤ t < 2π. (4.5.4)

In the impact costs of the round-trip trade, the time-dependent terms factor out, and
the sign in turn only depends on the volume ratio ϕ = jb/ja. Varying this parameter in
turn leads to the following necessary conditions for the absence of price manipulation,
derived in Appendix 4.A:

Lemma 4.5.1. Suppose the price impact function is of power form, h(x) = sgn(x)|x|c

for 0 < c ≤ 1. Then, to avoid price manipulation, the entries of the matrix ζ need to
satisfy:

0 < ζaa + ϕ1+cζbb − ϕcζab − ϕζba, for all ϕ ≥ 0 and a, b = 1, . . . , d. (4.5.5)

Specialized to small values of ϕ, Condition (4.5.5) implies that the diagonal elements
ζaa of ζ all need to be nonnegative. For linear price impact (c = 1), the right-hand side
of (4.5.5) in turn is a quadratic function of ϕ whose unique minimum allows to simplify
this constraint to ζ̄ab, ζ̄ba > 0 as well as

ζ̄aa >
1
4(ζ̄ab + ζ̄ba)2, (4.5.6)

where ζ̄aa = ζaa/ζbb, ζ̄ab = ζab/ζbb, and ζ̄ba = ζba/ζbb. This condition is satisfied for
positive eigenvalues of matrix ζ. To wit, so that the off-diagonal elements corresponding
to cross impact have to be small enough relative to the diagonal elements describing self
impact (both in factor space).

For strictly concave price impact (c < 1), the constraint (4.5.5) is more involved but
qualitatively and quantitatively rather similar. Let us illustrate this for the case c = 1/2
corresponding to the “square-root law” that is well established for self impact. Then (in
addition to again requiring all elements to be positive), we need

ζ̄aa >
2
27

((
3ζ̄ab + ζ̄2

ba

)3/2
+ ζ̄3

ba

)
+ 1

3 ζ̄abζ̄ba. (4.5.7)

6 The left panel of Figure 4.4 visually compares the conditions for c = 1 and c = 1/2
6This inequality emerges from the positivity condition of the real root of a cubic equation that char-

acterizes the optimal cost under square-root impact. Its structure is closely related to the discriminant
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Figure 4.4: The constraints for linear price impact (c = 1, orange), and square-root
impact (c = 1/2, blue): admissible values of ζ̄aa need to lie above the surface (left
panel) and curve (right panel, for symmetric ζ), respectively.

by plotting the surfaces that correspond to their right-hand sides. We see that the
constraints are qualitatively and quantitatively rather similar. In particular, in the
symmetric case ζ̄ab = ζ̄ba, the conditions are virtually the same as illustrated in the
right panel of Figure 4.4.

4.5.2 Impulsive Strategies

Next, we derive conditions on the matrix θ. To this end, we consider the following
family of “impulsive” trading strategies:7

(Ja
t , Jb

t ) =



 1√
2π(σa

1 )2 e
−

(t−µa
1 )2

2(σa
1 )2

, 1√
2π(σb

1)2 e
−

(t−µb
1)2

2(σb
1)2

 0 ≤ t < T∗, −1√
2π(σa

2 )2 e
−

(t−µa
2 )2

2(σa
2 )2

, −1√
2π(σb

2)2 e
−

(t−µb
2)2

2(σb
2)2

 T∗ ≤ t ≤ T.

(4.5.8)

As illustrated in Figure 4.3, we choose σa,b
1 ≪ σa,b

2 so that the “impulsive” trades
corresponding to the first humps dominate the overall trading costs (4.5.1). The smaller
second humps then correspond to a slower unwinding of the position built up in the first
ones.

The necessary conditions to avoid price manipulation are derived in Appendix 4.B
and they demand a strikingly strict shape of matrix θ when impact is strictly concave
rather than linear:

Lemma 4.5.2. To avoid price manipulation:

(i) For a linear impact function h(x) = x, the matrix θ must be symmetric;

in Cardano’s formula for solving cubic equations.
7Here, the trade direction is reverted at µ2 ≫ T∗ ≫ µ1 such that Ja,b

T∗
→ 0 and the two parts of the

strategy are smoothly pasted together. Alternatively, one could directly apply a mollification operator
around T∗.
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(ii) For a concave impact function h(x) = sgn(c)|x|c where 0 < c < 1, the matrix θ

must be diagonal.

For linear price impact models, condition (i) reproduces the results of Schneider and
Lillo (2019). However, when price impact is strictly concave, then the corresponding
condition in (ii) turns out to be much stronger, in that off-diagonal elements do not only
have to be symmetric but instead have to vanish. Whence, to avoid price manipulation
the cross terms that prevented us from rewriting the goal functional (4.4.2) in impact
space in fact have to vanish. Put differently, the models for which the optimization
problem (4.4.2) is intractable are ruled out already by imposing no price manipulation.

Remark 4.5.3. The intuitive meaning of restricting θ to be diagonal becomes apparent
when rewriting the dynamics of Jt in factor space:

dJt = θ−1
(
−ζJtdt + dLT Qt

)
. (4.5.9)

This shows that – in factor space – instantaneous cross-factor impact should be zero in
order to avoid price manipulation. It is important to note, however, that this does not
mean that there is no instantaneous cross impact (e.g., through the matrix L) in physical
space.

Remark 4.5.4. In terms of modelling, ensuring that θ is diagonal imposes constraints
on the choice of the model parameters L and Λ. Indeed, as

Λ = θ−1L⊤,

we see that once the matrix L has been fixed, there are only d (rather than d×d) degrees
of freedom to be fixed when choosing Λ, corresponding to the diagonal elements of θ.

4.6 Solution of the Risk-Neutral Optimization

In view of Lemma 4.5.2, we henceforth assume that the matrix θ = L⊤Λ−1 is diagonal
to rule out price manipulation. Then, the cross terms θabh(Ja

t )dJb
t , a ̸= b disappear

in the risk-neutral goal functional (4.4.2). Using Itô’s formula to replace the terms
h(Ja

t )dJa
t with H(Ja

T ), where H(·) is the antiderivative of the price impact function
h(·), (4.4.2) can therefore can be reduced to a simple pointwise maximization just like
in the single-asset case (Hey et al., 2025):

E
[∫ T

0

(
ᾱ⊤

t Jt − h(Jt)⊤ζJt

)
dt + α⊤

T Λ−1JT − 1⊤θH(JT )
]

. (4.6.1)

Remark 4.6.1. Unlike its counterpart (4.4.2) in trade space, the goal functional (4.6.1)
in impact space only depends on the liquidity factors Ja

t , but not their derivatives.
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Whence, as in Becherer et al. (2019); Ackermann et al. (2021), it can easily be ex-
tended to general strategies in a consistent manner, by defining their P&L as the limit
of the P&Ls of a sequence of approximating smooth strategies. In trade space, such an
approach does not work because the derivatives of the approximating strategies typically
blow up.

At the terminal time T – when neither impact on future trades nor alpha decay
needs to be considered anymore – one can check that the optimal impact state always
exhausts the entire available alpha signal (IT = αT ), just like in the single-asset version
of the model. The optimization at intermediate times t ∈ (0, T ) does not generally
admit a closed-form solution, but can be solved explicitly in an important special case
that we consider first.

4.6.1 Decomposition into Univariate Subproblems

Suppose that the matrix ζ = L⊤Λ−1B is also diagonal, e.g., because not just
θ = L⊤Λ−1 is diagonal (as required for the absence of price manipulation) but the
impact decay matrix B is diagonal as well. Then, the multivariate optimization prob-
lem (4.6.1) decomposes into d separate univariate subproblems. Each of these can in
turn be solved as in the single-asset case (Hey et al., 2025, Theorem 4.2). In particular,
the necessary conditions from Lemmas 4.5.1 and 4.5.2 indeed suffice to rule out price
manipulation in this case.

Crucially, assuming the matrices θ = L⊤Λ−1 and ζ = L⊤Λ−1B to be diagonal does
not mean that the model has no cross impact. Indeed, if Λ and L are multiples of the
same symmetric matrix (e.g., the covariance matrix of asset returns as in (Gârleanu and
Pedersen, 2013, Assumption 1) or its square root) and the decay matrix is diagonal (as
in Gârleanu and Pedersen (2016)), then both θ and ζ are clearly diagonal. However,
the price impact Ii

t =
∑d

a=1 Liah(Ja
t ) in asset i then still depends on all the liquidity

factors, because the matrix L does not have to be diagonal. In the case where L and Λ
are both multiples of the covariance matrix of positively correlated assets (or its square
root), this leads to positive cross impact through two channels: on the one hand, trades
in one asset not only affect the corresponding liquidity factor but also shift the other
ones in the same direction (though the matrix Λ). The impact on each asset then is
obtained as a positive combination of the positively correlated impact factors (through
the matrix L).

As a concrete example, suppose both θ = L⊤Λ−1 and ζ = L⊤Λ−1B are diagonal
and the impact function h(x) = sgn(x)|x|c, c ∈ (0, 1] is of power form. Then, pointwise
maximization of (4.6.1) yields an explicit formula for the optimal impact state

I∗
t =


1

1+c

(
αt − Lζ−1θ⊤L−1µα

t

)
, t ∈ (0, T ),

αT , t = T.

In particular, without alpha decay (µα
t = 0), we recover the same optimal impact

89



CHAPTER 4. CONCAVE CROSS IMPACT

0 T
0.0

0.1

0.2

0.3

0.4

d
Q
∗ t/
d
t

α1
t = α2

t

0 T

α1
t = −α2

t

Figure 4.5: Comparison of optimal trading speeds at time t ∈ (0, T ) without cross
impact (solid lines) and with cross impact (dashed lines), with parameters estimated for
assets with correlation 0.6 in Section 4.7. In the left panel, the (constant) alpha signals
for both assets are the same and given in bps (αt = (1, 1)), so less trading is possible
with the same optimal impact state. In the right panel, the signal of the alpha signals
are opposite (αt = (1, −1)), so that cross impact increases the optimal trading volumes.

states as in a collection of single asset versions of the model: a first bulk trade pushes
the optimal impact state to a fraction 1/(1 + c) of the corresponding alpha signal at the
initial time t = 0. Subsequently, one trades to maintain this impact state (by continuing
to trade in the same direction to offset impact decay) until the terminal time T , where
the remaining signal is exhausted with another bulk trade. These optimal impact states
do not change here due to the presence of cross impact, but the same is not true for the
corresponding trades. Indeed, at time t ∈ (0, T ), the optimal trading rate depends on
the matrix L and the alpha signals in all d assets:

dQ∗
t

dt
= (L⊤)−1ζh−1

(
L−1αt

1 + c

)
, (4.6.2)

where the inverse h−1(x) = sgn(x)|x|1/c of the impact function is applied componentwise.
Figure 4.5 illustrates the implications of this formula for d = 2 assets with parameters
estimated from asset pairs with return correlation 0.6 in Section 4.7. More specifically,
we compare the optimal trading rates in the calibrated model with cross impact (i.e.,
with a nondiagonal matrix L) to the optimal trading rate in an otherwise identical
model where the off-diagonal elements of L are set to zero. We see that for aligned
alpha signals cross impact reduces the trading speed substantially. Conversely, for anti-
aligned signals, the optimal trading rate is substantially larger with cross impact.

4.6.2 The Bivariate Case

When the risk-neutral problem (4.6.1) does not decompose into separate univariate
subproblems, it remains easy to solve numerically via pointwise maximization of the
integrand. However, its analytical analysis becomes considerably more involved. Indeed,
simple numerical examples show that already for two risky assets (d = 2), the goal
functional (4.6.1) generally is not a concave function of the controls (J1

t , J2
t ). Whence,
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4.6. SOLUTION OF THE RISK-NEUTRAL OPTIMIZATION

there is little hope to establish uniqueness in general.

Example 4.6.2. As the alpha signal does not affect the concavity of the goal functional,
we focus on the impact terms in (4.6.1). For square-root impact h(x) = sgn(x)|x|1/2

and ζ11 = ζ22 = 1, ζ12 = 0.1, ζ21 = 0.9, the constraint (4.5.7) is satisfied so that price
manipulation is not possible with the symmetric strategies from Lemma 4.5.1.

The left panel of Figure 4.6 plots the integrand −h(Jt)⊤ζJt of the goal functional (4.6.1)
as a function of the liquidity factors J1

t , J2
t . This function clearly has a unique max-

imum at J1
t = J2

t = 0, consistent with the absence of price manipulation. How-
ever, it is not globally concave. This is illustrated in the right panel of Figure 4.6,
which plots (J1

t , J2
t )H(J1

t , J2
t )⊤ for the Hessian matrix H of the integrand at the point

(J1
t , J2

t ) = (15, 3). This function takes some positive values, so the integrand is not a
globally concave function of the impact states.
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Figure 4.6: Panel on the left: the integrand −h(Jt)⊤ζJt of the goal functional (4.6.1)
plotted against the liquidity factors J1

t , J2
t . Panel on the right: (J1

t , J2
t )H(J1

t , J2
t )⊤ for

the Hessian matrix H of the integrand at the point (J1
t , J2

t ) = (15, 3), plotted against
the liquidity factors. The blue plane separates the positive and negative domain. Model
parameters are chosen as in Example 4.6.2.

However, for two risky assets, it is easy to check that when the price impact func-
tion is of power form (h(x) = sgn(x)|x|c, c ∈ (0, 1]) then the constraint (4.5.5) from
Lemma 4.5.1 is exactly what is needed to guarantee that the goal function (4.6.1) is
bounded from above and becomes negative for sufficiently large absolute values of J1

t

or J2
t .8 As a consequence, a global optimum always exists in this case, but may not be

unique.9

With some algebraic manipulations (cf. Appendix 4.C), the first order conditions that
any maximum (J1

t , J2
t ) must satisfy can be reduced to a single autonomous equation for

8Indeed, this is clear when J1
t and J2

t have the same sign. When they have opposite signs, this follows
from (4.5.5) by changing variables from J2

t to κtJ
1
t and using the homotheticity of the power function.

9In the symmetric case (ζ11 = ζ22, ζ12 = ζ21, θ11 = θ22, ᾱ1 = ᾱ2, and µ̄1 = µ̄2), any maximizer
then needs to be symmetric by a classical result of Bouniakovsky (1854) when the first order condition
is a cubic polynomial for square-root impact (c = 1/2). This again reduces the problem at hand to a
one-dimensional optimization, for which uniqueness follows from concavity.

91



CHAPTER 4. CONCAVE CROSS IMPACT

the ratio ϕ = J2
t /J1

t : 10

0 = ϕt + sgn(ϕt)|ϕt|ck1
t + sgn(ϕt)|ϕt|c−1k2

t + k3
t , (4.6.3)

where

k1
t = 1

c
− 1 + c

c

ᾱ1
t

ᾱ2
t

ζbb

ζab
, k2

t = ᾱ1
t

ᾱ2
t

ζba

ζab
, k3

t = ᾱ1
t

cᾱ2
t

ζba

ζab
+ ζaa

ζab

(1 + c)
c

. (4.6.4)

The product J1
t J2

t and in turn the individual impact states are pinned down by Equa-
tion (4.C.1) in Appendix 4.C. In the empirically most relevant case of square-root impact
(c = 1/2), changing variables to a power 1/c of ϕ leads to a cubic equation for positive
ϕt, and another for negative values of ϕt. The three roots of each of these equations then
need to be compared directly to the points where one or both of the variables vanish.

4.6.3 The General Case

For more than two risky assets, both existence and uniqueness for the maximization
of (4.6.1) are challenging open problems for further research. On the one hand, it is not
clear whether the necessary conditions derived by considering pairs of liquidity factors
in Lemma 4.5.1 are sufficient to guarantee that the goal functional remains bounded
from above in general. On the other hand, establishing uniqueness in the absence of
concavity also is a wide-open problem.

One regime that can be treated directly is the case of small off diagonal terms for
which the model is close to the decoupled case discussed in Section 4.6.1. Indeed, if
the off-diaongal elements of ζ are sufficiently small, then it is easy to check that any
maximum must lie on a compact set, and that the integrand of the goal functional is
strictly concave on the latter. Whence, there is a unique maximum characterized by the
first-order conditions

ᾱa
t = (1 + c)ζaasgn(Ja

t )|Ja
t |c +

d∑
b ̸=a

ζab

(
sign(Jb

t )|Jb
t |c + cJb

t |Ja
t |c−1

)
.

These optimality equations are nonlinear and coupled, but can be solved in closed-
form using the implicit function theorem when the off-diagonal elements of ζ are small.
Indeed, if ᾱa

t ̸= 0, a = 1 . . . , d, then there exists a solution of the first-order conditions.
In the case where all of diagonal elements are the same to ease notation (ζab = ζ), the

10When J1
t → 0, the ratio ϕt = J2

t /J1
t becomes ill-defined. In such cases, it is more appropriate to

consider the inverse ratio ϕ̃t = J1
t /J2

t → 0, and reformulate the first-order conditions accordingly. This
allows for a local analysis around ϕt → ∞ (or ϕ̃t → 0), ensuring that solutions can still be characterized
through a modified version of Equation (4.6.3).
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corresponding optimal impact states have the leading-order asymptotics

It =
d∑

a=1
La

ᾱa
t

ζaa(1 + c)

1 −
d∑

b ̸=a

sgn(ᾱb
t)ζ

c(c + 1)
(
c
∣∣∣ ᾱb

t

ᾱa
t

∣∣∣1/c
+
∣∣∣ ᾱb

t

ᾱa
t

∣∣∣)
c

. (4.6.5)

If all alpha signals in the latent factor space have the same sign, then this implies
that cross-impact leads to smaller optimal impact states, as traders reduce their aggres-
siveness to internalize mutual costs. However, if alpha signals have opposing signs or
sufficiently unbalanced magnitudes, cross-impact may instead amplify trading, resulting
in larger optimal impact states.

4.7 Empirical Analysis

With a general consistent modeling framework at hand, we now turn to its empirical val-
idation. To implement this, the no-price-manipulation conditions derived in Section 4.5
play a key role. Indeed, by narrowing down the parameter space for sensible models,
these conditions increase the robustness of the empirical calibration. Using proprietary
metaorder data, this allows us to reliably identify the concave structure of cross impact
as well as its decay patterns.

4.7.1 Data

In this paper, we use CFM’s proprietary metaorder dataset, cf. Hey et al. (2025) for
more details. Additionally, we use public data to determine the mid prices at the start
and end of each metaorder and to estimate the volatilities, correlations, and average
daily traded volumes of all asset pairs.

Figure 4.7 displays the return correlations of a subset of various futures contracts
included in the proprietary dataset. The left panel focuses on agricultural futures, which
are available with four different maturities, separated by a quarter of a year each. The
corresponding returns have a high correlation, which typically decreases slightly as the
distance between maturities increases. In contrast, there is not much inter product
correlation.

As a complement, the right panel of Figure 4.7 plots the corresponding correlations
for energy contracts. These display much larger intra-product correlations, since they
mostly depend on the same underlying resources.

Other future contracts in the data set include metals and indices that offer a wide
range of pairwise return correlations. This will allow us to study below how cross impact
estimates depend on the corresponding asset correlations.

4.7.2 Fitting Methodology

Price returns of pairs of assets are fitted against the cross impact model (4.5.9). To
obtain a system of decoupled equations as in 4.6.1, we assume that θ−1ζ = β · Id2 is
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Figure 4.7: Return correlations between different futures contracts.

a diagonal matrix with a single impact decay parameter β across all assets. Then the
following impact formula emerges:

It =
2∑

a=1
Lah(θ−1

aa )h(Ja
t ), where Ja

t =
∫ t

0
e−β(t−s)d(LT Qs)a. (4.7.1)

Even under these assumptions that hard code the absence of price manipulation,
there remains some freedom in how to choose the matrix L. In a static linear model,
this problem is studied by del Molino et al. (2020); a systematic extension of their
results that link to our dynamic nonlinear model is an important direction for future
research. In the present study, we focus on the simplest consistent extension of the
typical normalizations for single-asset models. To wit, we choose L = Σ1/2, so that
impact scales with volatility for uncorrelated assets. Moreover, the trades dQi

t of each
asset are normalized by the geometric mean of the average trading volumes of the asset
pair.11

This bivariate impact model is in turn calibrated for eight equal-sized batches of
about 100 product pairs each, sorted by correlations. The corresponding exponentially
weighted moving averages Ja

t are precomputed on a grid of values for the impact decay
rates β. With these moving averages at hand, we then calculate the terms Lah(Ja

t )
in (4.7.1) for a grid of different concavity coefficients c. Finally, for each pair (c, β),
we regress the predicted returns from the cross impact model against the true observed
returns. This allows us to fit the remaining two parameters (h(θ−1

11 )(c, β), h(θ−1
22 )(c, β))

by maximizing the model fit R2(c, β).12

11In the single-asset case, volumes are naturally expressed relative to the asset’s own average volume.
However, in the multivariate case, a normalization by individual volumes would typically not commute
with the matrix L and is therefore not guaranteed to be consistent with the absence of price manipulation.
In contrast, normalizing volumes by a single constant across both assets allows to ensure consistency
with the no-manipulation condition.

12Due to the normalization of trading volumes, the regression coefficients are of order one. This
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To assess the relative contributions of self and cross impact, we consider the “self
impact weights” wi

S(c, β, ρ):

wi
S(c, β, ρ) = ∇⃗Ii(c, β, ρ)2

i ||∇⃗Ii(c, β, ρ)||−2, (4.7.2)

where ∇⃗ = (∂Q1 , ∂Q2)⊤ represents the gradient operator which acts on the price impact
function Ii of asset i and computes the partial derivatives of the price impact with
respect to the traded volumes Q of both assets. It thereby captures the sensitivity of
the price impact to local changes in trading activity.13 These individual sensitivities
are in turn normalized by the aggregate sensitivity captured by the norm of the whole
gradient.

4.7.3 Results

The key findings of the empirical analysis summarized above are:

i) Cross impact is highly concave: the concavity parameter varies between 0.5 and
0.7.

ii) Cross impact decays on a daily timescale: the decay rate β varies between 0.1 and
0.9 per day, corresponding to a half-life of 0.7 to 7 days.

iii) The importance of cross impact depends on correlation: as correlation increases,
the self impact weight decreases. In particular, for highly correlated asset pairs,
bivariate cross impact accounts for nearly 50% of the total measured impact.

To illustrate this, Figure 4.8a shows the R2 of the fitted cross impact model as a
function of impact concavity c and impact decay β for product pairs with an average
return correlation of ρ = 0.95. Figure 4.8b presents the R2 values considering only self
impact, where the matrix L is diagonal and each volume is normalized by its own daily
volume. The maximum R2 achieved with cross impact is approximately 9.5 ·10−2, which
is 18% higher than the maximum R2 for self impact only. The prefactors h(θ−1

11 )(c, β)
and h(θ−1

22 )(c, β) in (4.7.1) are plotted in Figures 4.8c and 4.8d, respectively.14

Figure 4.9 extends the analysis described in Figure 4.2 from the introduction, which
examines how the fitted model parameters depend on the return correlation ρ between
the assets. In addition to the results for cross impact fitting, Figure 4.9 includes the
point estimates for self impact-only fits. We see that these estimates for concavity c and
impact decay β are encouragingly consistent with their counterparts for the cross-impact
version of the model.
simplifies the fitting procedure and reduces the sensitivity to scaling issues.

13Unlike for impact models, the sensitivities (4.7.2) generally depend on the trade sizes at which they
are evaluated. However, this dependency turns out to be rather weak, in that the bottom panel of
Figure 4.9 only changes slightly if the evaluation point is changed from anti-aligned to aligned trades.

14These prefactors are not directly comparable to the single asset version of the model studied in Hey
et al. (2025), as each asset’s trading volume is normalized by the geometric mean of both assets’ average
trading volumes here, rather than just its own average volume.
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Figure 4.8: Calibration results of the cross impact model in 4.7.1 for a single decay
timescale β: Panel (A) shows the statistical sensitivity for an arbitrage-free cross impact
model with pairs that have a return correlation ρ = 0.95. At this correlation level, R2

peaks at c = 0.66 and β = 0.13 per day. For comparison, Panel (B) shows R2 for the
self impact model. The cross impact model fits the data better since the highest R2

in Panel (A) is by 18% larger than the one in Panel (B). Panel (C) and (D) represent
the calibrated parameters h(θ−1

11 )(c, β) = 1.9 and h(θ−1
22 )(c, β) = 0.5, respectively that

maximize the R2.
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Figure 4.9: The point estimates (c, β) and the corresponding self impact weight wS(c, β)
across ρ of the cross impact model (blue) and the self impact model (orange). The point
estimates remain roughly constant and the self impact weight is inverse proportional to
return correlations.

4.8 Conclusion

This paper introduces and studies a model for the concave cross impact induced by
simultaneous trades of multiple assets. This framework allows to consistently address
several crucially important but often conflicting requirements:

(i) The model can be used for optimization problems, whose stability hinges on en-
suring that the model does not allow price manipulation;

(ii) The model exhibits full analytical tractability in some empirically relevant cases,
where optimzation in impact space factorizes into univariate subproblems but cross
impact nevertheless plays a key role in the sizing of the corresponding trades;

(iii) The model makes it possible to calibrate the cross impact of metaorders to empir-
ical data, for which non-linearity and impact decay are prominent features.

More broadly, a conceptual contribution of the paper is to illustrate the interplay
between model complexity and price manipulation conditions. To wit, when passing
from self impact to cross impact the parameter space of the model increases quadratically
in the number of assets. However, the space of manipulation strategies also grows, so
that the absence of price manipulation limits the number of genuinely free parameters.
Further extending this result is a key problem for future research. Indeed, any high-
dimensional, possibly machine-learned model of cross impact is bound to be unsuitable
for practical applications if the problem of dynamic arbitrage is not properly addressed.

Our first promising empirical results show that it is indeed possible to reliably mea-
sure the concave cross impact of metaorders and its gradual decay. An important direc-
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tion for future research is to extend this proof of principle to higher-dimensional settings
and to account not only for (symmetric) return correlations but also for heterogeneous
asset characteristics such as the different decay rates and also the markedly different
trading volumes of many highly correlated and otherwise similar assets (e.g., futures
with shorter and longer maturities or on-the-run vs. off-the-run treasury bonds).
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Appendix

4.A Proof of Lemma 4.5.1

To construct a roundtrip trade, we need

∫ T

0

dQi
t

dt
dt =

∫ T

0

(dJ i
t

dt
+ βJ i

t

)
dt = 0. (4.A.1)

Plugging in symmetric strategy (4.5.4) for asset a, we obtain

ja

∫ T

0
(sin(t) + β cos(t)) dt = ja (− cos(t) + β sin(t))

∣∣∣T
0

.

Whence, the integral vanishes if we choose T = 2nπ with for an integer n. The argument
for the strategy for asset b is analogous.

The impact costs (4.5.1) of the strategy (4.5.4) can be computed directly as

CT =
∫ T

0
[ja sin(t)ζaah (ja sin(t)) − jb sin(t)ζbbh (−jb sin(t))

+ ja sin(t)ζbbh (−jb sin(t)) − jb sin(t)ζbah (ja sin(t))] dt

= (jah(ja)ζaa − jbh(−jb)ζbb + jah(−jb)ζab − jbh(ja)ζba)
∫ T

0
sin(t)h(sin(t))dt.

(4.A.2)
As xh(x) ≥ 0 for all x, the integral term is always nonnegative, so the sign of the costs
depends only on the prefactor.

When the impact function is of power form h(x) = sign(x)|x|c, then to guarantee
nonnegative trading costs we need

0 ≤ j1+c
a ζaa + j1+c

b ζbb − jajc
bζab − jbj

c
aζba. (4.A.3)

For ja, jb > 0, we can divide this inequality by (jajb)c and rewrite it in terms of the frac-
tion ϕ = jb/ja. This finally leads to the necessary condition (4.5.5) from Lemma 4.5.1.

4.B Proof of Lemma 4.5.2

The roundtrip condition for asset a requires

0 =β

∫ T∗

0
(2π(σa

1)2)−1/2e
−

(t−µa
1 )2

2(σa
1 )2

dt −
∫ T

T∗
(2π(σa

2)2)−1/2e
−

(t−µa
2 )2

2(σa
2 )2

dt


−
∫ T

T∗
(t − µa

1)(2π(σa
1)2)−1/2e

−
(t−µa

1 )2

2(σa
1 )2

dt +
∫ T

T∗
(t − µa

2)(2π(σa
2)2)−1/2e

−
(t−µa

2 )2

2(σa
2 )2

dt.

If we choose 0 ≪ T∗ ≪ T and µa
1 ∈ (0, T∗), µ2

a ∈ (T∗, T ) sufficiently far away from the
endpoints of these intervals, then all the integrals tend to one, so that the roundtrip
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condition is satisfied in the limit (which is sufficient for the necessary condition we derive
below). The argument for the strategy for asset b is analogous.

When the impact function is of the power form h(x) = sgn(x)|x|c with 0 < c ≤ 1,
then the impact costs (4.5.1) of the strategy (4.5.8) are given by

CT =
2∑

i=1

∫
Ii

[(
ζaa − θaa

(t − µa
i )

(σa
i )2

)
e

−
(1+c)(t−µa

i
)2

2σ2
i√

2π(σa
i )2

1+c +
(

ζbb − θbb
(t − µb

i)
(σb

i )2

)
e

−
(1+c)(t−µb

i
)2

2(σb
i

)2√
2π(σb

i )2
1+c

+
(

ζab − θab
(t − µb

i)
(σb

i )2

)
eAab

i
e

−
(t−µ̄ab

i
)2

2(σ̄ab
i

)2√
2π(σb

i )2
√

2π(σa
i )2

c

+
(

ζba − θba
(t − µa

i )
(σa

i )2

)
eAba

i
e

−
(t−µ̄ba

i
)2

2(σ̄ba
i

)2√
2π(σa

i )2
√

2π(σb
i )2

c

]
dt,

where the integrals are computed over the intervals I1 = [0, T∗] and I2 = [T∗, T ], re-
spectively, and

(σ̄ab
i )2 = (σa

i )2(σb
i )2

c(σb
i )2 + (σa

i )2 , µ̄ab
i = µa

i c(σb
i )2 + µb

i(σa
i )2

(σa
i )2 + c(σb

i )2 ,

Aab
i = 1

2(σ̄ab
i )2

[
− (µ̄ab

i )2
(
c(σb

i )2 + (σa
i )2
)

+ (µa
i )2c(σb

i )2 + (µb
i)2(σa

i )2
]
.

Again using that almost all mass of the Gaussians is contained on respective intervals,
the impact costs become

CT =
2∑

i=1

[
1

√
1 + c

√
2π(σa

i )2
c ζaa + 1

√
1 + c

√
2π(σb

i )2
c ζbb

+
(

ζab − θab
(µ̄ab

i − µb
i)

(σb
i )2

)√
(σ̄ab

i )2

(σb
i )2

1√
2π(σa

i )2
c eAab

i

+
(

ζba − θba
(µ̄ba

i − µa
i )

(σa
i )2

)√
(σ̄ba

i )2

(σa
i )2

1√
2π(σb

i )2
c eAba

i

]
.

Now suppose that the variances (σa
1)2 and (σb

1)2 in the first interval are significantly
smaller than the ones in the second interval. Under this assumption, the terms associated
with ζ and the θ terms in the second part of the strategy become negligible. This
assumption allows us to focus solely on the contribution from the first term of the
strategy 0 ≤ t ≤ T∗. We therefore henceforth drop the subscript i to ease notation.
If we assume that both (σa

1)2 and (σb
1)2 are small enough, then the ζ terms become

negligible and only the θ terms remain. The no-price-manipulation condition in turn
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reduces to

0 < −θab
(µ̄ab − µb)

(σa)2

√
(σ̄ab)2

(σb)2
1√

2π(σa)2c eAab − θba
(µ̄ba − µa)

(σb)2

√
(σ̄ba)2

(σa)2
1√

2π(σb
i )2

c eAba
.

(4.B.1)

After plugging in the definitions of µ̄ab, µ̄ba, σ̄ab, σ̄ba, we observe that Aba − Aab = 0 and,
after rearranging, (4.B.1) in turn simplifies to

0 < −θab(µa − µb) − θba(µb − µa)
(

σb

σa

)1−c((σa)2 + c(σb)2

c(σa)2 + (σb)2

)3/2

. (4.B.2)

Linear Impact: When the price impact function is linear(c = 1), the inequal-
ity (4.B.2) further simplifies to:

0 ≤ −θab(µa − µb) − θba(µb − µa) = (θba − θab)(µa − µb). (4.B.3)

This needs to hold both for µa < µb and for µa > µb. Consequently, to prevent price-
manipulation, the matrix θ must be symmetric.

Concave Impact: We now turn to strictly concave impact functions with c < 1.
In the limit as σb → 0. the second term in the inequality (4.B.1) vanishes. Whence, to
avoid price manipulation, we need

0 ≤ −θab(µa − µb). (4.B.4)

As this has to hold for any choice of µa, µb, it follows that θab = 0. As the indices a, b

were arbitrary, the matrix θ therefore must be diagonal to avoid price manipulation.

4.C Proof to Section 4.6.2

When the impact function is of power form with exponent c, then the partial derivatives
of the goal function with respect to J1

t and J2
t lead to the first-order conditions

ᾱ1
t sign

(
γt

ϕt

) ∣∣∣∣γt

ϕt

∣∣∣∣− c
2

= (1 + c)ζaa + ζab (sign (ϕt) |ϕt|c + cϕt) , (4.C.1)

ᾱ2
t sign

(
γt

ϕt

) ∣∣∣∣γt

ϕt

∣∣∣∣− c
2

= (1 + c)ζbbsign(ϕt)|ϕt|c + ζba

(
1 + csign(ϕt)|ϕt|c−1

)
. (4.C.2)

Here, we have introduced the new variables ϕt = J2
t /J1

t and γt = J1
t J2

t (tacitly assuming
J1

t ̸= 0). After multiplying the first equation with ᾱ2
t /ᾱ1

t , subtracting it from the second
equation and rearranging terms, we obtain an autonomous equation for ϕt:

0 = ϕt + sign(ϕt)|ϕt|ck1
t + sign(ϕt)|ϕt|c−1k2

t + k3
t ,
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with the coefficients ki
t from (4.6.4). For square-root impact (c = 1/2), this leads to

a cubic equation after another change of variable, where the signs of the coefficients
depend on the sign of the variable. This in turn leads to six candidate solutions for the
maximum of the goal function. These in turn need to be directly compared to the points
where one or both variables are zero (so that the goal function is not differentiable).

4.D Constraints on Matrices L and θ

To motivate the structure of the concave cross-impact model, we begin by expressing the
instantaneous trading cost in terms of the price variation ∆p and the traded quantity
dQ:

∆pT dQ = ∆pT M−1,T MdQ.

Here, the matrix M plays a central role in transforming observable market quantities
into a latent impact factor space. Specifically, it encodes the mapping between price
changes and trading activity in a way that facilitates decorrelation and normalization.

To define a model based on observable market data, we consider returns ∆p, order
flow Q, and volatility σ. From these, we construct the order flow covariance matrix
Ω := E[QQT ], which we take to be diagonal in an idealized setting, and the return
covariance matrix Σ := E[∆p∆pT ], which captures asset return correlations.

The expected price impact is assumed to take the general form

E[∆p | Q, Σ, Ω] = f(Q, Σ, Ω).

Applying a linear transformation via M , we express this in the transformed (latent)
space:

M−1E[∆p | Q, Σ, Ω] = f(MQ, M−1,T ΣM−1, MΩMT ).

To diagonalize the model and decouple its variables, we introduce the symmetrized
matrix

Γ := Ω1/2,T ΣΩ1/2,

which admits a spectral decomposition Γ = UµUT in terms of orthonormal eigenvectors
U and eigenvalues µ. This motivates the choice

M = UT Ω−1/2,

which leads to the simplified expression

E[∆p | Q, Σ, Ω] = Ω−1/2,T U f(UT Ω−1/2Q, µ, I).

Exploiting the additive structure of f over eigencomponents, this becomes

E[∆p | Q] =
∑

a

Ω−1/2,T Ua f(UT
a Ω−1/2Q, µa, I),
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where Ua denotes the a-th column of U . After appropriate scaling and normalization,
we obtain a factorized form:

E[∆p | Q] =
∑

a

Ω−1/2,T f1(µa)Ua f(UT
a Ω−1/2Q, 1, I).

This leads to the identification of the matrix L, which governs the directional sensi-
tivity of price to order flow, as

L = Ω−1/2,T U ,

while the nonlinear scaling function f defines the matrix θ through its dependence on
the eigenvalues µ and a model-dependent prefactor. In particular, the diagonal of θ

can be interpreted as encoding the strength of impact per factor, modulated by the
eigenstructure of return correlations.

This construction has important structural implications. When volumes and volatil-
ities are homogeneous, i.e., when Ω = V I and Σ = σ2I, then L =

√
Σ = σI, and

the model reduces to a fully symmetric, tractable setting where impact commutes with
correlation. In this case, all traded volumes are scaled uniformly by V . However, for
general (non-uniform) Ω, the factor structure must be carefully preserved. Arbitrary
deviations from this structure may break symmetry and lead to models that admit price
manipulation. The matrix L must therefore absorb the anisotropy in Ω to ensure that
the resulting impact model remains arbitrage-free.
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Chapter 5

Estimation of a Nonparametric
Cross-Impact Kernel

Summary

This chapter develops a non-parametric estimation framework for concave and
decaying price impact kernels in a multivariate setting, using both proprietary
and synthetically-generated metaorder data. The estimator generalizes an offline
learning method to the empirically supported concave case and provides a confi-
dence bound that scales with the squared number of assets. A synthetic metaorder
generation mechanism is revisited to overcome data scarcity and improve kernel
calibration. Applied to corn futures, the estimated kernels reveal power-law de-
cay in self-impact, enhanced predictive accuracy through cross-impact, and pro-
nounced asymmetries linked to liquidity differences across assets.

5.1 Introduction

Price impact refers to the empirical fact that the execution of a large order causes adverse
and slowly decaying changes in the asset price, resulting in less favorable execution prices
for the trader. It is well documented that price impact is concave in trade size: larger
trades tend to move prices less per unit volume than smaller trades, a property that is
not captured by linear models. Instead, the empirical literature supports a square-root
law of market impact (Almgren et al., 2005; Tóth et al., 2011; Bershova and Rakhlin,
2013; Mastromatteo et al., 2014; Sato and Kanazawa, 2024), where the average signed
return (or peak impact) induced by a metaorder of volume Q is given by

Ipeak = Y σDsign(Q)
∣∣∣∣ Q

VD

∣∣∣∣c , (5.1.1)

where Y is a constant of order 1, VD is the daily traded volume, σD the daily
volatility, and c ≈ 0.5 is a concavity parameter that is remarkably stable across asset
classes, exchanges, and market structures (Tóth et al., 2016; Sato and Kanazawa, 2024;
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Hey et al., 2025).
Beyond its instantaneous effect, price impact also decays after trading. This tem-

poral relaxation has motivated a broad literature on optimal execution, where impact
dynamics is modeled either exponentially Obizhaeva and Wang (2013); Gârleanu and
Pedersen (2013); Hey et al. (2025) or with a power-law decay Bouchaud et al. (2009b);
Gatheral et al. (2012), leading to continuous-time Volterra-type models that express
price as the convolution of historical trade flow with an impact kernel. For a metaorder
split into child orders across M time intervals {Qti}M

i=1, the price dynamics follow

Pti+1 − Pt1 =
i∑

j=1
Gi,jh(Qtj ) + ϵti , i = 1, . . . , M, (5.1.2)

where h(x) = sgn(x)|x|c is a concave impact function and ϵtj represents some asset
specific noise. In stationary settings, where seasonal effects are accounted for, the kernel
is often assumed to be time-homogeneous: Gi,j = Gi−j , simplifying estimation via
convolution.

A non-parametric estimation method for the impact kernel in the linear case c = 1
was introduced in Neuman and Zhang (2023), where the estimation occurs in an online
learning framework. While theoretically appealing, this approach assumes independence
between price trajectories and heterogeneous trading strategies, which is unrealistic in
practice. Furthermore, online learning is computationally expensive and difficult to
implement in real time. As a result, most impact calibrations are performed offline.
Neuman et al. (2023) proposed an offline estimator based on historical trade and price
data and derived optimal convergence rates for this estimator. While effective on syn-
thetic datasets, its performance on real-world metaorder data remains untested.

A central challenge in applying these methods to proprietary metaorder data is
that impact is concave, with empirical c ≈ 0.51, unlike the linear assumption c = 1.
The present work generalizes the estimation framework of Neuman et al. (2023) to the
concave case, incorporating the empirically supported square-root impact law. This
extension significantly improves goodness-of-fit in kernel estimation.

A second difficulty lies in data scarcity. Institutional investors often execute a single
metaorder per asset per day, meaning that even long historical datasets rarely contain
more than 103 metaorders per product. This limited sample size is insufficient to reliably
estimate high-dimensional impact kernels, especially when accounting for liquidity or
tick-size-specific effects.2

To overcome this, CFM’s proprietary dataset is enhanced using a synthetic metaorder
generation procedure inspired by empirical findings in Maitrier et al. (2025b); Sato and
Kanazawa (2024) and introduced in Maitrier et al. (2025a). These synthetic metaorders

1Linear models with c = 1 allow analytical tractability but fail to capture empirically observed
saturation effects in impact. The concave case is more realistic but introduces significant estimation and
optimization complexity.

2This issue is further exacerbated when attempting to estimate cross-sectional impact effects or
calibrate volatility- or liquidity-conditioned kernels.
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Figure 5.1: Estimated price impact kernel Gt−t1 using CFM proprietary data only (gray)
and the enhanced dataset including synthetic metaorders (blue).

are constructed by randomly sampling from tick-by-tick data, assigning trades to proxy
metaorders via a systematic prescription described in Section 5.3.2.

Figure 5.1 illustrates the improvement in kernel estimation where the propagator
kernel is estimated with the non-parametric procedure described in Neuman et al. (2023)
from two datasets; CFM’s proprietary corn future trades over a ten-year horizon (gray)
and a regularized version where the dataset is augmented with synthetic metaorders
(blue). The enhanced dataset yields a smoother kernel that better captures the decay
of impact.

Cross-impact, the influence of trades in one asset on the price of another, plays an
essential role in multivariate price formation. Mastromatteo et al. (2017) show that
ignoring cross-impact leads to misestimation of liquidity and suboptimal execution. Le
Coz et al. (2024) empirically demonstrate that highly liquid assets lead the price discov-
ery process, influencing less liquid correlated instruments with a lag constrained by trad-
ing frequency. In Hey et al. (2024b), the first consistent nonlinear cross-impact model
is proposed and price manipulation conditions are derived for exponentially decaying
concave kernels. They show empirically using CFM metaorder data that concavity and
impact decay are significant in cross-impact settings.

Based on this literature, the framework of Neuman et al. (2023) is extended to a
multivariate setting with concave price impact. The multivariate model expresses the
return of asset a1 ∈ {1, . . . , d} as:

P a1
ti+1 − P a1

t1 =
d∑

a=1

i∑
j=1

G
(a1,a)
i−j h(Qa

tj
) + ϵa1

ti
, i = 1, . . . , M. (5.1.3)

where P a1
ti

is the mid-price of asset a1 at time ti, Qa
tj

are the traded volumes in assets
a ∈ 1, d and G

(a1,a)
i−j is the propagator that quantifies the influence of all assets a on the

asset a1. This framework is applied to three highly correlated corn futures with different
expiries. The resulting kernel estimates confirm findings from Hey et al. (2024b), showing
strong cross-impact contributions among highly correlated assets. They also provide
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new insights: not only does incorporating metaorders from correlated assets improve
predictive performance, but the estimated kernels exhibit strong asymmetries. These
asymmetries reflect differences in liquidity across contracts, with more liquid assets
exerting a stronger and more persistent impact on their less liquid counterparts.

In summary, this work contributes in the following ways:

1. It extends the nonparametric kernel estimation to accommodate concave impact
functions in line with the square-root law;

2. It proposes a metaorder proxy to augment sparse proprietary datasets, enabling
better non-parametric estimation;

3. It estimates the Kernel non-parametrically on metaorder data and confirms the
universal power-law decay;

4. It generalizes the framework to a multivariate setting and derives the convergence
rate for the convolution kernel;

5. It is shown on proprietary CFM data that the cross-impact kernel has more pre-
dictive power than the univariate model;3

6. It illustrates the importance of liquidity differences in cross-impact.

The remainder of this paper is structured as follows. Section 5.2 introduces the
multivariate propagator model with concave impact functions and presents the offline
estimator used for kernel calibration. The section also derives a confidence bound on the
estimator under convex constraints. Section 5.3 describes the empirical implementation,
including the construction of synthetic metaorders in Section 5.3.2 and useful methods
needed for reliable kernel estimation in Section 5.3.3. Section 5.3.4 presents the main
empirical findings: self-impact kernels follow power-law decay, proxy data improve esti-
mation, and cross-impact also enhances predictive power. The results on cross-impact
in Section 5.3.4 illustrate the asymmetric effects on the kernels with respect to liquid-
ity differences in the calibrated assets. Finally, Section 5.4 summarizes the results and
highlights the drawbacks and possible extension of the multivariate estimation.

5.2 Price Impact Estimation with offline data

This section introduces the offline dataset and methodology used to estimate the cross-
impact propagator G. The dataset consists of metaorders4 and corresponding price

3This is consistent with microstructural theories that posit that liquidity and information flow across
correlated assets is inherently multivariate, especially in futures markets where contracts on the same
underlying asset co-move. See, e.g., Hasbrouck (1995).

4Each metaorder represents a large, strategically executed order, often spanning minutes to hours
that is sliced into smaller child orders. In this dataset, metaorders are treated as exogenous realizations
and are not derived from a known optimization criterion.
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trajectories observed across multiple time periods for a portfolio of d assets. A least-
squares framework is used to estimate G, both in the unconstrained and constrained
settings. The constrained estimator enforces admissibility conditions derived from no-
arbitrage arguments, such as convexity and non-negativity of the kernel.

5.2.1 Dataset

The offline dataset D consists of N ∈ N metaorders executed across d assets. Each
metaorder is observed on an equidistant time grid of M intervals over a fixed time
horizon [0, T ]. Formally,

D =
{

(P (n)
ti

)M+1
i=1 , (Q(n)

ti
)M+1
i=1

∣∣∣n = 1, ..., N
}

(5.2.1)

where P
(n)
ti

=
(
(P 1

ti
)(n), . . . , (P d

ti
)(n)

)T
represents the observed price for all d assets dur-

ing metaorder n, and Q
(n)
ti

=
(
(Q1

ti
)(n), . . . , (Qd

ti
)(n)

)T
the associated trading volumes.

Setting P (n) := (P (n)
ti

)M
i=1 and Q(n) := (Q(n)

ti
)M
i=1 , (P (n), Q(n))N

n=1 are realizations of
random variables defined on a probability space (Ω, F ,P) 5 satisfying the following prop-
erties: for each n, Q(n) is measurable with respect to the σ-algebra F ′

n−1 where

F ′
n−1 = σ

{(
P (k)

)n−1

k=1
,
(
Q(k)

)n−1

k=1

}
(5.2.2)

and there exist F ′
n-measurable random-variables ϵ

(n)
ti

= ((ϵ1
ti

)(n), ..., (ϵd
ti

)(n))T such that
the price evolution can be assumed to follow a propagator model with additive noise

P
(n)
ti+1 − P

(n)
t1 =

i∑
j=1

G∗
i−jh(Q(n)

tj
) + ϵ

(n)
ti

, i = 1, ..., M,

where G∗ ∈ RM×d×d is the true (unknown) propagator and h(·) is a continuous, in-
creasing and concave function that is applied to each element in the volume vector. The
random variables satisfy EP[ϵ(n)

ti
|F ′

n−1] = 0 and EP[(ϵ(n)
ti

)T ϵ
(n)
ti

] < ∞ for all i = 1, ..., M .
For each asset a1 ∈ {1, ..., d}, the noise (ϵa1)(n) ∈ RM is assumed to be conditionally
sub-Gaussian analogously to Assumption 2.8 of Neuman et al. (2023): 6

Assumption 5.2.1. For an offline dataset D of size N ∈ N there exists a known
constant R > 0 such that for all n = 1, ..., N ,

EP[exp(⟨v, (ϵa1)(n)⟩)|F ′
n−1] ≤ exp

(
R2||v||2

2

)
, ∀v ∈ RM and a1 = 1, ..., d (5.2.3)

5Here, F refers to the natural filtration generated by the dataset D, i.e., the sigma-algebra associated
with observed price and volume sequences. The filtration F ′ governs the noise process ϵ(n), which
models idiosyncratic price fluctuations not explained by executed volume. These two filtrations allow
us to distinguish between observed trading data and residual stochasticity.

6This assumption allows for concentration inequalities and high-probability bounds in the estimation
procedures. The conditionality reflects that volatility may depend on previously observed metaorders.
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which means that each (ϵa1)(n) is R−conditionally sub-Gaussian with respect to F ′
n−1.

Example 5.2.2. Typical examples of impact kernels for d = 1 include strictly positive,
decaying, and convex functions of time. For instance, Bouchaud et al. (2018) proposed
G(t) = l0

(l0+t)β for constants β, l0 > 0. Other examples include power-law kernels
G(t) = 1

tβ It>0, for 0 < β < 0.5 Gatheral (2010), and exponential decay G(t) = e−ρt with
ρ > 0 as in Obizhaeva and Wang (2013).

For d > 1, the constraint set Gad of admissible impact kernels ensures structural
properties. For the case of linear cross-impact, conditions have been derived to prevent
price manipulation in Abi Jaber et al. (2024) (Theorem 2.14), where admissible kernels
must be non-negative, convex, symmetric, and non-increasing in time. However, the cur-
rent work focuses on concave impact functions, for which the theoretical understanding
of admissibility is limited.

In Hey et al. (2024b), price manipulation conditions are established for a class of
concave impact models with exponentially decaying kernels. There, the admissibility
condition corresponds to a matrix property on one of the propagator components, as
specified in Lemma 5.1. When the concavity parameter c ∈ [0.5, 1], the conditions still
closely resemble those in the linear case.

In the present work, we adapt and slightly relax the structural assumptions from Abi
Jaber et al. (2024). In particular, we no longer enforce symmetry of the kernel matrix at
each time step. 7 Instead, we require that the kernel matrices are positive semi-definite
so that all eigenvalues are non-negative. The resulting class of admissible convolution
kernels includes all matrix-valued functions Gi : [1, M ] → Rd×d8 that are decreasing,
convex, non-negative and semi-positive definite. Formally, the admissible set is defined
as:

Gad :=


Gi =

(
G

(a1,a2)
i

)d

a1,a2=1

∣∣∣∣∣∣∣∣∣∣∣∣

xT Gix ≥ xT Gi+1x, and

xT Gix − xT Gi−1x ≤ xT Gi+1x − xT Gix ∀x ∈ Rd

G
(a1,a2)
i ≥ 0 ∀a1, a2 = 1, . . . , d

∃µ ∈ R+ s.t. det(Gi − µId) = 0


.

(5.2.4)

5.2.2 Non-parametric Estimation

The unknown propagator G∗ is estimated via least squares method. For each metaorder
n, define the vector of observed returns y(n) ∈ RM ·d as

7Asymmetric cross-impact across assets (e.g., asset a1 impacting a2 more than vice versa) is often
observed empirically in equity and futures markets.

8While the kernel is formulated on a discrete time grid, the underlying class of models admit
continuous-time analogs via Volterra-type representations.
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y(n) =
(
y1

t1 , . . . , y1
tM

, . . . , yd
t1 , . . . , yd

tM

)T
,
(
ya1

ti

)(n)
= (P a1

ti+1)(n) − (P a1
t1 )(n)

These returns must satisfy

y(n) = U(n)G∗
v + ϵ(n), (5.2.5)

where the propagator G∗ ∈ RM×d×d has been reshaped to a vector G∗
v ∈ RM ·d2 9 and

the matrix U(n) ∈ RM ·d×M ·d2 consists of block matrices D(n) ∈ RM×M ·d which are lower
triangular convolution matrices formed from the concave function applied to the trade
flow h(Q(n)

ti
). The vector and matrices look as follows:

G∗
v =

(
G

(1,1)
1 , G

(1,2)
1 , . . . , G

(1,d)
1 , G

(1,1)
2 , . . . , G

(1,d)
M , G

(2,1)
1 , . . . G

(d,1)
1 , ..., G

(d,d)
M

)T
,

D(n) =


h(Q(1,n)

t1 ) ... h(Q(d,n)
t1 ) 0 ... ... ... ... 0

h(Q(1,n)
t2 ) ... h(Q(d,n)

t2 ) h(Q(1,n)
t1 ) ... h(Q(d,n)

t1 ) 0 ... 0
...

...
...

...
...

...
... . . . ...

h(Q(1,n)
tM

) ... h(Q(d,n)
tM

) h(Q(1,n)
tM−1) ... h(Q(d,n)

tM−1) ... ... h(Q(d,n)
t1 )

 ,

U(n) =


D(n) 0 . . . 0

0 D(n) . . . 0
...

... . . . 0
0 . . . . . . D(n)

 .

The non-parametric propagator estimator is obtained by solving a regularized least-
squares problem10 by minimizing the following quadratic loss over all admissible price
impact coefficients

(Gv)N,λ := arg min
G∈Gad

(
N∑

n=1

∥∥∥y(n) − U(n)Gv

∥∥∥2
+ λ ∥Gv∥2

)
, (5.2.6)

where λ > 0 is a regularization parameter and ∥ · ∥ denotes the Frobenius norm.

Remark 5.2.3. Asset-specific regularization parameters could be introduced in practice.
The problem would then be

9The reshaping of the 3-dimensional tensor G∗ into a flat vector G∗
v facilitates standard least-squares

formulations. Each subvector of G∗
v corresponds to a temporal kernel for a given asset pair (a1, a2).

10This estimation procedure extends classical ridge regression to the multivariate setting with struc-
tural constraints on the kernel shape. The regularization penalizes roughness and helps stabilize the
estimator in low-sample regimes.
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(Gv)N,λa1,a2 ,...,λd,d
:= arg min

G∈Gad

(
N∑

n=1

∥∥∥y(n) − U(n)Gv

∥∥∥2

+
d∑

a1=1

d∑
a2=1

λa1,a2

∥∥∥(G(a1,a2)
i )M

i=1

∥∥∥2
 ,

where in the last term, the vector (G(a1,a2)
i )M

i=1 ∈ RM is the vector whose elements are
decreasing.

The estimator (Gv)N,λ can thus be computed by projecting the unconstrained least-
squares solution onto the set Gad

11. Specifically,

(Gv)N,λ = arg min
Gv∈RM·d2

∥∥∥W 1/2
N,λ

(
Gv − (G̃v)N,λ

)∥∥∥2
, (5.2.7)

with

WN,λ =
N∑

n=1
(U(n))T U(n) + λIM ·d2 , (G̃v)N,λ = W −1

N,λ

N∑
n=1

(U(n))T y(n). (5.2.8)

The confidence region of the estimated coefficient (Gv)N,λ in terms of the observed data
is derived analogously to Theorem 2.14 in (Neuman et al., 2023, Proof 5).

Corollary 5.2.4. Suppose the noise ϵ(n) is conditionally sub-Gaussian and independent
across n, and that the true propagator G∗ ∈ Gad as defined in (5.2.4). Then, for all
λ > 0 and δ ∈ (0, 1), with probability at least 1−δ under P, the constrained least-squares
estimator (Gv)N,λ satisfies the following bound:

∥WN,λ ((Gv)N,λ − G∗
v)∥ ≤ R

(
2 log

(det(WN,λ)
δ2λMd2

))1/2
+ λ

∥∥∥W −1/2
N,λ G∗

v

∥∥∥ , (5.2.9)

where WN,λ =
∑N

n=1(U(n))T U(n) + λIM ·d2 and the constant R > 0 is the sub-Gaussian
parameter that controls the tail behavior of the noise ϵ(n).

Remark 5.2.5. The convergence rate remains similar to the one in (Neuman et al.,
2023, Theorem 2.14), the only difference being the dimensional scaling. Since the esti-
mator now involves d2 kernels over M time steps, the determinant term contributes a
factor of λ−Md2 instead of λ−M .

The proof follows the same steps as in Neuman et al. (2023), with the additional
constraint Gv ∈ Gad taken into account. Since the constraint enforces that all functions
x⊤Gix for all i ∈ [0, M ] are convex and non-increasing in time, the admissible set
remains nonempty, closed and convex. As the regularized objective is strongly convex
and the constraint set is convex, the estimator (Gv)N,λ remains uniquely defined.

11Since Gad is convex and closed, this projection problem admits a unique solution. In practice, the
projection step is implemented using quadratic programming or isotonic regression with semi-definite
constraints.
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5.3 Empirical Analysis: Metaorder Impact

This section presents the non-parametric estimation of the impact convolution kernel
associated with CFM’s metaorders on corn futures contracts. Due to the limited num-
ber of observed metaorders, a proxy mechanism is employed to synthetically augment
the dataset. This enables a more robust estimation of the convolution kernel in the
univariate setting d = 1, where a grid search is performed over a set of concavity param-
eters c ≤ 1. The results indicate that concave impact functions outperform their linear
counterparts in the single-asset case. Consequently, the identified concavity parameter
is retained for subsequent model calibration in a multivariate framework involving two
and three corn futures contracts with different expiries.

5.3.1 Data

The empirical analysis is based on CFM’s proprietary dataset; see Hey et al. (2025)
for further details. In addition, publicly available market data is used to reconstruct
mid-price trajectories for all three instruments on each trading day during which at least
one contract was executed. This enables both the estimation of the intra-order price
dynamics and the measurement of cross-impact effects arising from the execution of one
contract on the others.

Three corn futures with different maturities are selected for this study due to the
availability of multiple contracts with a shared underlying and differing maturities, each
displaying return correlations that exceed 90%12. The selection is not driven by asset-
specific properties and the methodology generalizes to any instrument in the dataset that
satisfies similar structural conditions. This selection reduces the proprietary dataset to
approximately 1.5 ·103 metaorders across the three contracts. The front-month contract
exhibits the highest trading frequency, consistent with its greater liquidity relative to
longer-dated instruments.13

Since the dataset does not include detailed information on the volumes of individual
child-orders, a uniform execution profile14 is assumed over the order duration. Specif-
ically, each metaorder is discretized into 5-minute intervals such that the execution
horizon is rounded to the nearest 5-minute mark and the total traded volume is equally
distributed across the 54 bins15. While this assumption is well-suited to the chosen

12Such high return correlations are typical among futures contracts with shared underlyings but
differing maturities. This structural redundancy makes them well-suited for testing cross-impact effects,
which rely on information propagation between correlated assets.

13The Samuelson effect states that futures price volatility tends to increase as contracts approach ma-
turity. Consequently, the front-month contract typically exhibits higher intraday volatility and trading
frequency, making it better suited for impact estimation. See Samuelson (1973).

14When high-frequency child-order timestamps are unavailable this assumption is standard. It assumes
execution follows a Volume-Weighted Average Price (VWAP) trajectory at constant rate, which aligns
well with typical execution algorithms in liquid futures.

15This corresponds to approximately 4.5 hours of trading, excluding the first and last 30 minutes of
the session. The start of each metaorder is aligned with the first bin. This avoids microstructural noise
at the open and close, and prevents instability in the estimation procedure that can arise when the
number of time steps M becomes too large.
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temporal resolution, its accuracy may degrade for finer-grained time grids.

5.3.2 Metaorder Proxy

The number of available metaorders in the proprietary dataset is insufficient to support a
reliable estimation of the impact convolution kernel on a per-product basis. As shown in
Neuman et al. (2023), the convergence rate of the estimator depends both on the number
of samples and on the number of trading periods M . While the dataset does not permit
an increase in M , the number of effective samples can be enhanced by introducing a
synthetic metaorder generation procedure, inspired by the findings in Maitrier et al.
(2025b).

The approach originates from proprietary data on the Tokyo Stock Exchange, where
the authors had access to full trade-level information, including trader identifiers. They
observed that individual traders tend to execute consecutive trades in the same direction,
forming buy or sell sequences. Metaorders were identified by aggregating consecutive
trades of the same sign per trader, resetting upon sign reversal. Maitrier et al. (2025a)
noticed that the presence of trader IDs was not essential to reproduce this behavior.
Instead, one can simulate such identifiers by randomly assigning trades to synthetic
IDs, thereby generating proxy metaorders via the following algorithm:

1. Assign to each trade a random integer nT ∈ {0, 1, ..., NT − 1} where NT is a
chosen positive integer. The integers are sampled uniformly from this finite set,
representing synthetic trader IDs.

2. Group all trades with the same assigned nT and sort them in chronological order.

3. Partition each sequence into metaorders by aggregating trades with identical signs
(buy or sell), terminating the sequence upon sign change.

Table 5.3.2 illustrates this procedure on a toy example. For instance, trades with
nT = 0 form a consistent sell-side sequence {−1, −1, −1}, corresponding to a single
metaorder with three child-orders. In contrast, trades with nT = 1 exhibit a sign change,
resulting in two separate metaorders with one and two child-orders, respectively. The
average length of a metaorder is influenced by both the chosen value for NT and the
empirical rate of sign changes in the underlying trade flow.

Figure 5.2 displays the peak impact, as defined in Equation 5.1.1, for synthetic
metaorders on TBOND, 10USNOTE, EUROSTOXX, DAX, and CORN0 futures, fil-
tered to include only those with at least four child-orders. All observed impact curves
exhibit concave scaling behavior, consistent with a power-law relation. Empirically, the
impact function fits a power-law with an exponent in the range c ∈ [0.5, 0.7]. The
metaorder volume range is bounded below by microstructural properties (notably for
large-tick assets such as DAX) and above by the decreasing likelihood of long, uninter-
rupted sign sequences in the trade flow. In practice, the upper bound is observed around
1% of the daily traded volume.
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Time Trade Sign Trader ID (nT ) Metaorder Assignment

10:05:011 -1 0 1
10:06:123 -1 1 2
10:06:509 -1 2 3
10:07:205 -1 0 1
10:07:388 1 2 4
10:07:434 1 3 5
10:07:786 -1 1 2
10:08:657 -1 3 6
10:09:476 -1 0 1
10:09:567 1 1 7

Table 5.1: Example of synthetic metaorder construction via randomized trader ID as-
signment and sign-based grouping.
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Figure 5.2: Peak impact as a function of normalized volume for synthetic metaorders
across TBOND, 10USNOTE, EUROSTOXX, DAX, and CORN futures. Impact is scaled
by daily volatility; volume is normalized by daily traded volume. The dashed black
curve represents a square-root scaling, while the red dashed line corresponds to a linear
benchmark.

Choosing NT requires careful calibration to the microstructural properties of the as-
set under study. For small NT (e.g. NT ≈ 1), artificially long metaorders are generated,
which are unrealistic in practice. Conversely, large NT (e.g. NT ≈ Number of trades
per day) results in metaorders with trades sparsely distributed over the day, diluting
the temporal structure. Thus, intermediate values of NT must be selected to capture
liquidity and volatility features of the asset.16

The minimum and maximum feasible metaorder sizes depend on both the asset’s tick
size and its intraday trade frequency. Figure 5.3 demonstrates that the smallest possible
metaorder volume is influenced by the average trade size in the underlying asset. For
large-tick assets, where the average trade size is relatively small, fewer shares are needed

16Further research is needed to systematically tune NT , potentially via minimizing the out-of-sample
forecast error of peak impact. For corn futures, we use NT = 20, which empirically balances the trade-off
between temporal coherence and metaorder length.
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Figure 5.3: Minimum metaorder size as a function of the average trade size in the
underlying asset. The metaorders with the smallest volume depend on the tick-size of
the underlying asset.

to achieve a significant dollar position, resulting in smaller metaorders. This suggests an
inverse relationship between the minimum volume of metaorders and the average trade
size of the asset17. Consequently, the computational thresholds, which vary between
10−6 and 10−4, as shown in Figure 5.2, can be explained by the average tick size. Assets
such as the DAX and CORN contracts exhibit larger thresholds compared to their
smaller tick counterparts.

5.3.3 Methodology

Metaorders in a Constant Timegrid.

The analysis is conducted on an equally spaced intraday time grid with a resolution
of 5 minutes, consistent with the metaorder execution constraint. When constructing
impact models from public order flow data, each time bin is typically populated, yielding
non-zero entries throughout. In contrast, metaorders originate at arbitrary intraday
timestamps that rarely coincide with the market open, introducing variability in both
the start time and the effective duration of each execution.

To address this, the initial timestamp of the metaorder is chosen to be t1, and the
subsequent M = 54 return observations are aggregated into a column vector y(n) as
in 5.2.2. The corresponding volume process captured in matrix U(n) is defined as zero
post-execution. During execution, volume is either assumed to be uniformly distributed
across bins (for CFM’s metaorders) or follows observed child-order execution (in the
case of metaorder proxies).

In the context of cross-impact estimation, the time origin t1 is aligned with the start
of the metaorder of the most liquid asset. This ensures consistency across the multi-asset
regression framework when assessing the predictive power of the model.18

17Indeed, in large-tick assets significant positions can be built using fewer trades due to the larger
notional per trade. Hence, smaller metaorders are sufficient to observe measurable impact.

18The alignment ensures that the multi-asset convolution model has a common time reference, which
is crucial when comparing lead-lag structures or estimating asymmetric cross-impact.
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Metaorder Cross-Impact.

Metaorders (both synthetic and CFM) of the most liquid contract are matched with
metaorders from the remaining contracts. Since the number of available metaorders
decreases with asset liquidity, it is not always possible to construct fully matched samples
across all assets. The matching procedure randomly selects metaorders from each asset.
If metaorders are unavailable for a given asset in a particular sample, the corresponding
block in the design matrix U(n) is set to zero. This procedure is repeated until all
samples are generated. As a result, the total number of samples corresponds to the
number of metaorders available in the most liquid asset.

Normalization.

The blue curve in Figure 5.4 displays the average intra-day volatility profile of the corn
contracts, computed over 5-minute intervals from open to just 10 minutes before close.
The clear asymmetric pattern reflects heightened volatility at market open, and lower
volatility in midday periods. This profile underscores the importance of appropriately
normalizing returns prior to kernel estimation, as metaorders may begin and end at
different times within the trading session.

To correct for both time-of-day effects and bin duration, returns are scaled using
a modified Garman–Klass estimator defined on the vector of mid-prices (P (n)

ti
)M+1
i=1 .

Specifically, for each metaorder n, the volatility estimate is given by:

σ
(n)
[t1,ti+1] = 1

3

(
max

1≤j≤i+1
(P (n)

tj
) − min

1≤j≤i+1
(P (n)

tj
)
)

+ 2
3

∣∣∣P (n)
ti+1 − P

(n)
t1

∣∣∣ , (5.3.1)

where P
(n)
t1 and P

(n)
ti+1 are the mid-prices at the start and end of the interval, respectively,

and the maximum and minimum are taken over all mid-prices observed during that
window. As bin duration ∆t = ti+1 − t1 increases, volatility scales with the square
root of time, as is visible from the orange curve in Figure 5.4, where the sample mean
σ̄[t1,t1+∆t] ∝ σ̄[t,t+5min]

√
∆t.

Beyond return normalization, trading volume exhibits a comparable intraday pat-
tern. During highly liquid periods, the same trade volume induces a smaller price impact
than during low-liquidity intervals. To capture this effect, traded volumes are normal-
ized by the average volume profile at the corresponding time of day. Let VD denote the
total volume traded daily and V5 the volume in a 5-minute bin. Then, the normalized
volume is computed as Q/VD

V5/VD
, where Q is the metaorder volume in the bin and V5/VD

the average volume fraction. The propagator model under this normalization procedure
becomes

P
(a1)
ti+1 − P

(a1)
t1

σ[t1,ti+1]
=

d∑
a=1

i∑
j=1

G
(a1,a)
i−j h

(Qtj

V̄tj

)
+ ϵti , i = 1, ..., M,

where V̄tj denotes the stationary bin volume at time tj , as defined above and σ[t1,ti+1]
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is the volatility in the time interval [t1, ti+1]. Note that, contrary to calibrations in
Taranto et al. (2016); Patzelt and Bouchaud (2017), the propagator G in our setup does
not absorb the volatility term. This normalization ensures robustness with respect to
noisy estimates for small bin sizes, and allows the impact kernel to be estimated from
inputs that are free from seasonal intraday patterns in volatility and liquidity.
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Figure 5.4: Average intra-day volatility σ̄[t,t+∆t] defined by 5.3.1 over ∆t = 5 minute
bins (blue) and over increasing bin sizes σ̄[15:30,t] (orange).

Predictive Power.

To assess the predictive capability of the impact kernel, the combined dataset of real
and synthetic metaorders is split into training and test sets using an 80:20 ratio. The
model is calibrated on the training set using the estimator defined in Equation (5.2.8),
which aggregates the return responses over all observed metaorders.

Out-of-sample performance is computed by applying the kernel to predict the return
trajectories in the test set. The predictive power is quantified using the coefficient of
determination R2, which allows for a direct comparison across different model specifi-
cations – for example, between linear and concave impact functions, or between models
with and without cross-impact terms

5.3.4 Results

Table 5.3.4 summarizes the out-of sample performance across various model specifica-
tions. The following sections then explain thoroughly the kernel specifications. The
main results of the analysis are:

1. A concave model fits better than a linear model;

2. The metaorder proxy enhances the estimation of impact decay, which is harder
to calibrate than concavity alone due to lower R2 signal contrast in the original
dataset;

3. Without having any previous assumption on the shape of the kernel, it shows that
impact decays as a power-law;
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4. Cross-impact enhances the predictive power.

In the following two subsections, we provide additional details about our results on self-
and cross-impact estimations.

Table 5.2: Out of sample R2 for Self- and Cross-Impact Models in units of 10−2.

(a) Self-Impact

Linear Square-root Enhanced dataset
3.2 4.6 4.8

(b) Cross-Impact

Two Assets Three Assets
6.3 6.5

Self-Impact Estimation

The concavity of the self-impact function is first assessed using only the CFM metaorder
dataset. The R2 peaks around a concavity parameter c = 0.6 19(Figure 5.5), and the
square-root case (c = 0.5) results in a R2 of 4.6%. This supports the use of concave
impact functions over linear ones.

To improve kernel estimation, the dataset is extended using metaorder proxies. Fig-
ure 5.1 shows the kernel estimate based on the original (gray) and extended dataset
(blue). The estimate based on CFM data alone appears irregular, whereas the proxy-
enhanced estimate demonstrates a smooth decay consistent with a power law. This
behavior becomes clearer in Figure 5.6 with log-log scale where the propagator follows
a straight line.

Initially, due to our normalization, the propagator decays as t−1, since returns are
divided by lag-wise volatility. To align with the empirical findings in Bouchaud et al.
(2004); Bucci et al. (2015), where the propagator accounts also for volatility, we rescale
our estimated kernel by multiplying by

√
t. This adjustment recovers the conventional

decay rate of t−0.5, which is consistent with the literature.
While concavity in volume is the dominant contribution to the predictive power of

the impact-model, the decay is a second-order effect, consistent with findings in Hey
et al. (2025). Table 5.3.4 shows that R2 improves slightly when including proxy data.

Cross-Impact Estimation

Pairwise and multi-asset cross-impact models are considered next. The two-asset model
shows that including a second highly correlated contract increases R2 to 6.3%, a substan-
tial gain over the self-impact-only specification (Table 5.3.4b). The three-asset model
increases R2 further to 6.5%.

Figure 5.7 illustrates the estimated propagators for two corn futures with different
expiries labeled 0 and 1. The kernels are asymmetric: the impact of Corn0 on Corn1
is stronger than the reverse. This asymmetry reflects liquidity differences across assets,

19This is consistent with previous empirical studies, e.g., Tóth et al. (2016), which find that c ∈
[0.4, 0.6] across asset classes.
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Figure 5.5: Out-of-sample R2 as a function of concavity c for self-impact models using
CFM metaorders. The peak occurs at c = 0.6.
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Figure 5.6: Impact kernel estimates as a function of time in hours for self-impact with
(blue) and without proxy-enhanced date (gray) in log-log scale. The proxy-enhanced
kernel, after rescaling, decays smoothly and can be approximated by a power-law with
an exponent of −0.5.

with Corn1 being less liquid. These findings align with previous observations on aggre-
gate order flow impact in Le Coz et al. (2024), but here they are obtained via direct
calibration of the propagator for metaorders.

Figure 5.8 extends the estimation to three assets. While the qualitative patterns
persist, the estimates become less stable. The width of the confidence intervals derived
in 5.2.4 increases substantially from the single-asset to the multi-asset model. This
confirms that multi-asset cross-impact estimation is subject to high variance, but the
structure of the kernels remains interpretable. In particular, cross-impact can exceed
self-impact in magnitude, depending on relative liquidity as shown in Figures 5.7b, 5.8b,
and 5.8c.

5.4 Conclusion

This chapter developed a multivariate estimation framework for concave price impact
using metaorder data, extending a known offline learning method to an empirically
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Figure 5.7: Cross- and self-impact kernels as a function of time in hours estimated
for two assets with different expiries. Left: The estimated cross-impact from Corn1 to
Corn0 (orange) and the self-impact on Corn0 (blue). Right: The estimated cross-impact
from Corn0 to Corn1 (blue) and the self-impact on Corn1 (orange). The difference in
ratios between cross- and self-impact in the two plots reflects the liquidity differences.

relevant setting. A confidence bound was derived, and its dependence on the number of
assets d, scaling as d2, illustrates the data requirements for high-dimensional models.

Using a novel metaorder proxy, synthetic metaorders were constructed to enrich the
dataset and stabilize the estimation, particularly for the impact decay. To the author’s
knowledge, this is the first calibration of a metaorder-based cross-impact model involving
more than two assets.

Several limitations and extensions remain. While the convexity constraints used are
practically motivated, admissibility conditions for concave multivariate kernels remain
an open question. Although the methodology is illustrated using corn futures, it gen-
eralizes directly to other asset classes. Finally, the dimensionality of the kernel poses
practical challenges. To address this, one could introduce market-wide liquidity factors
or reduce the model to pairwise interactions through a market mode decomposition, as
proposed in Muhle-Karbe and Tracy (2024).
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Figure 5.8: Estimated cross- and self-impact kernels as a function of time in hours for
the three-asset model on corn futures with different expiries. The relative importance
of self- and cross-impact kernels varies according to liquidity difference. The confidence
intervals from 5.2.4 increase with dimensionality causing less stable calibrations.
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Chapter 6

Conclusion

Over the past decades, market microstructure research has grown increasingly sophis-
ticated. Yet, most execution models used in practice remain crude simplifications of a
more nuanced empirical reality. This thesis demonstrates that price impact is concave,
decaying, and cross-asset dependent, and that these features can be meaningfully incor-
porated into actionable execution strategies without sacrificing tractability. By bridging
the gap between theory and real data, the work offers explicit and interpretable strategies
for hedge funds and algorithmic traders who face nonlinear costs in financial markets.
But its relevance goes beyond optimal execution in institutional trading. For academics,
it provides a blueprint for modeling impact realistically under minimal assumptions,
with transparent constraints that ensure arbitrage-freeness. It also demonstrates how
public trade data, when properly aggregated and in abundance, can serve as a viable
alternative in the absence of meta-order datasets, especially when enhanced by synthetic
proxies. More broadly, this work contributes to a principled and empirically validated
framework for thinking about alpha trading as a control problem under frictions, with
implications for both financial engineering and the design of regulatory impact models
that better reflect actual market behavior.

At its core, this thesis provides comprehensive guidelines for trading under concave
and transient price impact for both single-asset and multi-asset settings. By mapping the
trading problem into impact space, we derived explicit, closed-form solutions for optimal
trading strategies under realistic alpha signals, dynamic liquidity, and multiple decay
timescales. These solutions reveal how impact concavity, alpha decay, and liquidity
dynamics jointly shape execution decisions. Importantly, we established conditions to
guarantee that these strategies remain manipulation-free to ensure consistency even
in complex multi-asset environments. Our modeling choices are not just theoretically
motivated but grounded in proprietary meta-order data, producing strategies that match
market behavior more closely than those built on public order flow alone.

But designing a good strategy is not just about theory — it is about robustness. We
quantified the costs of model misspecification, showing that underestimating concavity
or decay can lead to significantly degraded P&L, even when statistical fit appears ac-
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ceptable. On the empirical side, we extended kernel estimation tools to non-parametric,
multivariate settings, showing that meta-order cross-impact is not only measurable but
asymmetric, driven by liquidity differences across assets. Enhancing proprietary data
with synthetic meta-orders further improved estimation accuracy. Altogether, this work
yields a comprehensive checklist for execution strategy design:

An optimal trading strategy should ...

• balance alpha decay and impact decay across the full execution horizon;

• adapt to changing market liquidity;

• reflect the concave nature of market impact, especially in large-volume
regimes;

• account for transient impact components;

• remain arbitrage-free by construction;

• account for cross-asset effects and optimize execution at the portfolio level;

• be calibrated on reliable trade data – ideally from meta-orders or enhanced
public data proxies.

These principles offer both practical guidance for trading and a rigorous foundation
for future academic models. Rather than assuming a fixed model, we show that good
execution starts with asking the right empirical questions and then building models
constrained only by what the data actually tell us.

6.1 Limitations

Despite the breadth of this study, several limitations remain. Most notably, while we suc-
cessfully developed arbitrage-free models for concave self-impact and a specific concave
power-law form h(x) = sgn(x)|x|c, we were unable to derive necessary no-manipulation
conditions for arbitrary concave functions in the cross-impact setting.

Empirically, our results are based on futures contracts, which is a liquid and ho-
mogeneous asset class. Although we expect similar behaviors in equities, applying the
framework to options would require a significantly richer structure to account for the
strike-maturity surface.

Furthermore, all cross-impact estimations, e.g. parametric and non-parametric, were
restricted to a maximum of three assets due to data limitations. Beyond that, estimation
becomes increasingly noisy, suggesting that alternative approaches, such as fitting a
bivariate model between each asset and an aggregate market factor (see Mastromatteo
et al. (2017); Muhle-Karbe and Tracy (2024)), may be more viable in high-dimensional
settings. These challenges are compounded by the fact that reliable estimation relies
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on high-quality meta-order data, or the effectiveness of proxy constructions, which may
not be uniformly available across all markets.

Finally, the theoretical derivations in this thesis are based on a risk-neutral P&L
objective without accounting for spread costs and other fees. This formulation makes
sense for large hedge funds and principal trading firms, which typically operate un-
der minimal inventory constraints and seek to maximize raw returns. However, many
market participants, such as market makers, pension funds, or retail brokers, face risk
limits, inventory penalties, and capital constraints that cannot be ignored. For market
makers, in particular, trading costs such as spreads and fees are crucial, especially in
high-frequency trading environments where they can significantly influence profitabil-
ity. Extending the control problem to risk-sensitive objectives with linear spread costs
and fees would significantly broaden the applicability of the framework. Yet, tractable
formulas that optimally balance predictive trading signals, risk, and trading costs are
typically limited to quadratic costs with linear price impacts.

6.2 Future Research

Concave Cross-Impact and ETFs. Building on our current results and the the-
ory of the multivariate AFS model, a natural next step is to apply this framework to
Exchange-Traded Funds (ETFs), which represent liquid baskets of underlying assets.
This extension would allow us to empirically examine the cross-impact arising from
ETF flows and to design trading rules that account for the underlying correlation struc-
ture and execution frictions. While del Molino et al. (2020) address linear execution,
our framework introduces concavity and decay, potentially leading to more realistic cost
models and improved execution strategies for ETF market makers and index traders.

Leveraging Alpha Signals. Efficiently utilizing multiple alpha signals is increas-
ingly critical for modern funds, particularly as they face diminishing returns from price
impact. As CFM notes, “[price impact] costs always catch up and overtake expected
gains. This effect of diminishing returns with ever larger orders is the principal reason
why successful funds are often closed to further investment." Hedge funds must balance
transactional efficiency while managing diverse signals with varying time horizons and
stochastic properties. The framework of “A Separation Principle for Dynamic Portfolio
Optimization" by Moallemi and Van Roy provides a robust foundation for addressing
this challenge. By reducing complex multi-period portfolio problems to single-period
deterministic optimizations, this framework allows for dynamic adaptation to evolving
market conditions, making it an ideal starting point for exploring alpha signal mixing.

An extended framework would allow one to accommodate convex constraints or
concave single-asset transaction costs to better reflect real-world trading conditions.
It can also be extended to incorporate cross-asset transaction costs and cross-alpha
dynamics. To incorporate cross-impact, the forecast return term structure could be
expanded to include (linear or concave) interactions with other assets.

125



CHAPTER 6. CONCLUSION

Dynamic Market Impact in AMMs. In automated market makers (AMMs),
market impact is directly tied to the liquidity in the pool, determined by the capital
allocated to the exchange. Unlike limit order books (LOBs), where liquidity varies
dynamically with supply and demand, AMMs provide deterministic pricing based on
invariant functions or demand curves. While this allows the immediate price impact of
a trade to be predictable, the dynamics following a sequence of trades remain unclear.
Key questions include: How do prices evolve after a large trade? How long does it
take for prices to revert to pre-trade levels? And what factors drive this reversion
or persistence? Investigating these dynamics requires analyzing on-chain data from
platforms like Uniswap and Curve that provide trade sizes, pool reserves, and price
trajectories to construct models for price reversion and market stability. Understanding
these single-asset dynamics is important for optimizing trading rules and mitigating
adverse selection within AMMs.

Cross-Impact and Causality. An interesting research direction lies in linking
concave cross-impact models based on meta-order data with causal approaches to market
dynamics. Recent studies on cross-impact derived from order flow imbalance (Albers
et al., 2021; Cont et al., 2021) and causality-inspired financial models (Oliveira et al.,
2024) have emphasized the role of impact in shaping trading costs and price formation,
albeit from different perspectives. In the present work, we develop a cross-impact model
that acknowledges our trades can affect the prices of correlated assets, even without
directly trading them. This is distinct from the approach taken by the aforementioned
authors, who incorporate high-frequency order flow data to account for these observed
price changes. In their framework, trading one asset and moving its price can trigger
other market participants to trade correlated assets, reflecting an indirect form of impact
not labeled as cross-impact in their context.

Integrating causal inference tools with structural models could lead to a better un-
derstanding of how alpha signals, informational asymmetries, and short-term market
dynamics interact. In particular, the causal regularization framework proposed in (Web-
ster and Westray, 2022) offers a way to address latent confounding, reduce estimation
bias, and improve the interpretability and robustness of cross-impact models. Such a
synthesis would not only enhance predictive accuracy, but would also contribute to more
reliable and theoretically grounded execution strategies.

Extending the (Linear) Latent Order Book Model. A final direction for future
research concerns the extension of the nonlinear latent order book framework proposed
by (Donier et al., 2015), which models price trajectories using a reaction-diffusion system
inspired by agent-based dynamics. Their approach reproduces the square-root impact
law, decomposes price moves into mechanical and informational components, and re-
mains free of price manipulation. Extending this model to a multivariate setting could
be achieved by introducing inter-asset interactions mediated by distinct types of agents,
such as statistical arbitrageurs, who link price dynamics across order books. This would
provide a natural microstructural mechanism for modeling cross-impact from first prin-
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ciples and could lead to new insights into how liquidity and information propagate across
correlated assets.

6.3 Final Remark

The directions outlined above are not exhaustive, but offer a glimpse into the many
ways in which this work can be extended, adapted, and applied. As trading continues
to evolve, so too must our models. Beyond the models and results, the work highlights
a broader point: price impact is not just a nuisance to be minimized; it is a window
into how information and liquidity interact. By understanding it more deeply, we also
understand more about how markets work.

A better understanding of price impact is not just of academic interest. It enables
more efficient trade execution, improves transaction cost estimation, and ultimately
contributes to more efficient markets. As such, refining these models and extending
them to new asset classes, trading environments, and data regimes remains a worthwhile
direction for both research and industry practice.
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Résumé : Dans les marchés financiers modernes,
l’exécution de gros ordres affecte significativement les
prix des actifs, un phénomène connu sous le nom
d’impact de marché. Comprendre et modéliser cet im-
pact est essentiel pour les investisseurs institutionnels
et les traders algorithmiques, car il influence directe-
ment les coûts d’exécution, les stratégies de trading
et l’efficacité des marchés. Bien que de nombreux
modèles analytiques supposent un impact linéaire, les
données empiriques révèlent généralement un impact
concave qui décroit dans le temps, suivant souvent
une loi de puissance plutôt qu’une exponentielle.
Ce travail explore à la fois les fondements théoriques
et les propriétés empiriques de l’impact de marché.
Nous proposons d’abord une stratégie d’exécution
optimale dans un cadre non linéaire avec impact tran-

sitoire, montrant comment les signaux d’alpha et la
liquidité doivent être équilibrés pour minimiser les
coûts. Ensuite, nous quantifions les pertes liées à une
mauvaise spécification du modèle d’impact, en mon-
trant que sous-estimer la concavité ou la vitesse de
décroissance peut gravement nuire à la performance.
Nous étendons ensuite ces modèles au cas multi-
actifs avec impact croisé, tout en assurant des
conditions de non-manipulation des prix. Enfin, nous
développons une méthode non paramétrique pour
estimer l’impact croisé sur des données de méta-
ordres enrichies par des proxies construits à partir de
données publiques. Ces résultats permettent de ca-
librer plus efficacement les modèles d’exécution, en
capturant les effets de corrélation entre actifs et les
asymétries de liquidité observées sur les marchés.

Title : Trading with Concave (Cross-) Impact
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Abstract : Executing large orders in financial markets
moves prices — an effect known as price impact. Un-
derstanding this phenomenon is essential for institu-
tional investors, algorithmic traders, and researchers,
as it directly influences transaction costs and the ef-
ficiency of trading strategies. While many theoretical
models assume linear impact, empirical studies show
that price impact is often concave and transient, de-
caying over time in a manner more consistent with
power laws than exponential functions. This thesis de-
velops a modeling framework that incorporates these
empirical realities and translates them into practical
execution strategies.
First, we derive optimal execution strategies under
concave and transient impact, demonstrating that
closed-form trading rules can be obtained even with
time-varying alpha and liquidity. Empirical calibration
on proprietary futures data shows that impact decays
across multiple timescales and confirms that public

trading data systematically underestimates execution
costs. We also quantify the performance loss due to
model misspecification and show that underestima-
ting decay or concavity is more damaging than ove-
restimation — providing new guidance for model cali-
bration.
Second, we extend concave impact models to multi-
asset settings. This includes a theoretical frame-
work for arbitrage-free cross-impact, as well as non-
parametric kernel estimation techniques based on
meta-order data. To overcome data sparsity, we work
with synthetic meta-order proxies that enhance the
empirical estimation. This allows us to uncover cross-
impact asymmetries driven by liquidity differences and
show predictive gains in multi-asset price dynamics.
The models and estimators presented here offer ro-
bust tools for both practitioners and researchers ai-
ming to design efficient execution strategies or to ana-
lyze market impact using trade-level data.
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